Evidence that cathepsin B contributes to skeletal muscle protein breakdown during sepsis

1989 ◽  
Vol 4 (2) ◽  
pp. 147-148
2001 ◽  
Vol 85 (4) ◽  
pp. 447-457 ◽  
Author(s):  
B. Löhrke ◽  
E. Saggau ◽  
R. Schadereit ◽  
M. Beyer ◽  
O. Bellmann ◽  
...  

Diets with protein of inferior quality may increase protein breakdown in skeletal muscle but the experimental results are inconsistent. To elucidate the relationship, pigs were fed isoenergetic and isonitrogenous diets based on soyabean-protein isolate or casein for 15 weeks, with four to six animals per group. A higher plasma level of urea (2.5-fold the casein group value, P=0.01), higher urinary N excretion (2.1-fold the casein group value, P=0.01), a postabsorptive rise in the plasma levels of urea, 3-methylhistidine and isoleucine in soyabean protein-fed pigs suggested recruitment of circulatory amino acids by protein breakdown in peripheral tissues. Significant differences between dietary groups were detected in lysosomal and ATP-dependent proteolytic activities in the semimembranosus muscle of food-deprived pigs. A higher concentration of cathepsin B protein was found, corresponding to a rise in the cathepsin B activity, in response to dietary soyabean protein. Muscle ATP-stimulated proteolytical activity was 1.6-fold the casein group value (P=0.03). A transient rise in the level of cortisol (2.9-times the casein group value, P=0.02) occurred in the postprandial phase only in the soyabean group. These data suggest that the inferior quality of dietary soyabean protein induces hormonally-mediated upregulation of muscle protein breakdown for recruitment of circulatory amino acids in a postabsorptive state.


1991 ◽  
Vol 260 (5) ◽  
pp. E727-E730 ◽  
Author(s):  
M. N. Goodman

The metabolic response to infection includes loss of lean tissue and increased nitrogen excretion. The loss of muscle tissue during infection results in large part from accelerated skeletal muscle protein breakdown. Recent studies suggest that macrophage-derived products secreted during infection may signal increased muscle proteolysis. To test this, in the present report the ability of interleukin (IL-1) and tumor necrosis factor (TNF) to enhance muscle proteolysis was examined. Young rats were injected intravenously with either recombinant human IL-1 or TNF. For comparison some rats were injected with bacterial endotoxin. Eight hours after each treatment, the extensor digitorum longus muscles were isolated and incubated in vitro to assess muscle proteolysis by measuring tyrosine and 3-methyl-L-histidine release by the incubated muscles. Treatment of rats with either IL-1, TNF, or endotoxin all induced fever, increased serum lactate, and reduced serum zinc levels. Despite similar metabolic changes, muscle proteolysis responded differently. As expected, endotoxin treatment enhanced muscle protein breakdown, whereas IL-1 treatment was without effect. On the other hand, TNF was effective in accelerating muscle protein breakdown. TNF addition in vitro failed to enhance muscle proteolysis by incubated muscles, suggesting that its effects may be mediated in an indirect manner; however, a direct mode of action cannot yet be ruled out. Overall, the data indicate that the acute administration of TNF can signal increased muscle proteolysis similar to that observed during infection.


1996 ◽  
Vol 28 (5) ◽  
pp. 361-366 ◽  
Author(s):  
J. Fujita ◽  
T. Tsujinaka ◽  
C. Ebisui ◽  
M. Yano ◽  
H. Shiozaki ◽  
...  

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Craig Porter ◽  
Matthew Cotter ◽  
David N Herndon ◽  
Labros S Sidossis ◽  
Elisabet Børsheim

2009 ◽  
Vol 296 (4) ◽  
pp. R893-R901 ◽  
Author(s):  
Ambikaipakan Balasubramaniam ◽  
Rashika Joshi ◽  
Chunhua Su ◽  
Lou Ann Friend ◽  
Sulaiman Sheriff ◽  
...  

We previously determined that ghrelin synthesis was downregulated after burn injury and that exogenous ghrelin retained its ability both to stimulate food intake and to restore plasma growth hormone levels in burned rats. These observations and the finding that anabolic hormones can attenuate skeletal muscle catabolism led us to investigate whether ghrelin could attenuate burn-induced skeletal muscle protein breakdown in rats. These studies were performed in young rats (50–60 g) 24 h after ∼30% total body surface area burn injury. Burn injury increased total and myofibrillar protein breakdown in extensor digitorum longus (EDL) muscles assessed by in vitro tyrosine and 3-methyl-histidine release, respectively. Continuous 24-h administration of ghrelin (0.2 mg·kg−1·h−1) significantly inhibited both total and myofibrillar protein breakdown in burned rats. Ghrelin significantly attenuated burn-induced changes in mRNA expression of IGFBP-1 and IGFBP-3 in liver. In EDL, ghrelin attenuated the increases in mRNA expression of the binding proteins, but had no significant effect on reduced expression of IGF-I. Ghrelin markedly reduced the elevated mRNA expression of TNF-α and IL-6 in EDL muscle that occurred after burn. Moreover, ghrelin normalized plasma glucocorticoid levels, which were elevated after burn. Expression of the muscle-specific ubiquitin-ligating enzyme (E3) ubiquitin ligases MuRF1 and MAFbx were markedly elevated in both EDL and gastrocnemius and were normalized by ghrelin. These results suggest that ghrelin is a powerful anticatabolic compound that reduces skeletal muscle protein breakdown through attenuating multiple burn-induced abnormalities.


2012 ◽  
Vol 83 (8) ◽  
pp. 594-598 ◽  
Author(s):  
Ahmed A. SALEH ◽  
Yahya Z. EID ◽  
Tarek A. EBEID ◽  
Akira OHTSUKA ◽  
Masahiro YAMAMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document