cathepsin activity
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 21)

H-INDEX

23
(FIVE YEARS 2)

Avicenna ◽  
2021 ◽  
Vol 2022 (1) ◽  
Author(s):  
Amr Ahmed ◽  
Mohammad Nezami ◽  
Abdullah Alkattan ◽  
Ahmed Mohamed ◽  
Omar Alshazly ◽  
...  

Cysteine cathepsins are defined as lysosomal enzymes that are members of the papain family. Cysteine cathepsins (Cts) prevalently exist in whole organisms, varying from prokaryotes to mammals, and possess greatly conserved cysteine residues in their active sites. Cts are engaged in the digestion of cellular proteins, activation of zymogens, and remodeling of the extracellular matrix (ECM). Host cells are entered by SARS-CoV-2 via endocytosis. Cathepsin L and phosphatidylinositol 3-phosphate 5-kinase are crucial in endocytosis by cleaving the spike protein, which permits viral membrane fusion with the endosomal membrane and succeeds in the release of the viral genome to the host cell. Therefore, inhibition of cathepsin L may be advantageous in terms of decreasing infection caused by SARS-CoV-2. Coordinate inhibition of multiple Cts and lysosomal function by different drugs and biological agents might be of value for some purposes, such as a parasite or viral infections and antineoplastic applications. Zn2+ deficiency or dysregulation leads to exaggerated cysteine cathepsin activity, increasing the autoimmune/inflammatory response. For this purpose, Zn2+ metal can be safely combined with a drug that increases the anti-proteolytic effect of endogenous Zn2+, lowering the excessive activity of some CysCts. Biguanide derivative complexes with Zn2+ have been found to be promising inhibitors of CysCts protease reactions. Molecular docking studies of cathepsin L inhibited by the metformin-Zn+2 complex have been performed, showing two strong key interactions (Cys-25&His-163) and an extra H-bond with Asp-163 compared to cocrystallized Zn+2 (PDB ID 4axl).


2021 ◽  
Vol 17 (11) ◽  
pp. e1009743
Author(s):  
Dana Bohan ◽  
Hanora Van Ert ◽  
Natalie Ruggio ◽  
Kai J. Rogers ◽  
Mohammad Badreddine ◽  
...  

Phosphatidylserine (PS) receptors enhance infection of many enveloped viruses through virion-associated PS binding that is termed apoptotic mimicry. Here we show that this broadly shared uptake mechanism is utilized by SARS-CoV-2 in cells that express low surface levels of ACE2. Expression of members of the TIM (TIM-1 and TIM-4) and TAM (AXL) families of PS receptors enhance SARS-CoV-2 binding to cells, facilitate internalization of fluorescently-labeled virions and increase ACE2-dependent infection of SARS-CoV-2; however, PS receptors alone did not mediate infection. We were unable to detect direct interactions of the PS receptor AXL with purified SARS-CoV-2 spike, contrary to a previous report. Instead, our studies indicate that the PS receptors interact with PS on the surface of SARS-CoV-2 virions. In support of this, we demonstrate that: 1) significant quantities of PS are located on the outer leaflet of SARS-CoV-2 virions, 2) PS liposomes, but not phosphatidylcholine liposomes, reduced entry of VSV/Spike pseudovirions and 3) an established mutant of TIM-1 which does not bind to PS is unable to facilitate entry of SARS-CoV-2. As AXL is an abundant PS receptor on a number of airway lines, we evaluated small molecule inhibitors of AXL signaling such as bemcentinib for their ability to inhibit SARS-CoV-2 infection. Bemcentinib robustly inhibited virus infection of Vero E6 cells as well as multiple human lung cell lines that expressed AXL. This inhibition correlated well with inhibitors that block endosomal acidification and cathepsin activity, consistent with AXL-mediated uptake of SARS-CoV-2 into the endosomal compartment. We extended our observations to the related betacoronavirus mouse hepatitis virus (MHV), showing that inhibition or ablation of AXL reduces MHV infection of murine cells. In total, our findings provide evidence that PS receptors facilitate infection of the pandemic coronavirus SARS-CoV-2 and suggest that inhibition of the PS receptor AXL has therapeutic potential against SARS-CoV-2.


2021 ◽  
Vol 233 (5) ◽  
pp. S244
Author(s):  
Dhavan Shah ◽  
Elias Gounaris ◽  
David J. Bentrem

Meat Science ◽  
2021 ◽  
pp. 108718
Author(s):  
Lin Wang ◽  
Jingjun Li ◽  
Shuang Teng ◽  
Wangang Zhang ◽  
Peter P. Purslow ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicholas J. Silva ◽  
Leah C. Dorman ◽  
Ilia D. Vainchtein ◽  
Nadine C. Horneck ◽  
Anna V. Molofsky

AbstractMicroglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct microglial subset in the synapse rich regions of the zebrafish (Danio rerio) brain. We found that ramified microglia increased in synaptic regions of the midbrain and hindbrain between 7 and 28 days post fertilization. In contrast, microglia in the optic tectum were ameboid and clustered around neurogenic zones. Using single-cell mRNA sequencing combined with metadata from regional bulk sequencing, we identified synaptic-region associated microglia (SAMs) that were highly enriched in the hindbrain and expressed multiple candidate synapse modulating genes, including genes in the complement pathway. In contrast, neurogenic associated microglia (NAMs) were enriched in the optic tectum, had active cathepsin activity, and preferentially engulfed neuronal corpses. These data reveal that molecularly distinct phagocytic programs mediate synaptic remodeling and cell engulfment, and establish the zebrafish hindbrain as a model for investigating microglial-synapse interactions.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2071
Author(s):  
Monika Biasizzo ◽  
Mojca Trstenjak-Prebanda ◽  
Klemen Dolinar ◽  
Sergej Pirkmajer ◽  
Janja Završnik ◽  
...  

Cystatin C is a potent cysteine protease inhibitor that plays an important role in various biological processes including cancer, cardiovascular diseases and neurodegenerative diseases. However, the role of CstC in inflammation is still unclear. In this study we demonstrated that cystatin C-deficient mice were significantly more sensitive to the lethal LPS-induced sepsis. We further showed increased caspase-11 gene expression and enhanced processing of pro-inflammatory cytokines IL-1β and IL-18 in CstC KO bone marrow-derived macrophages (BMDM) upon LPS and ATP stimulation. Pre-treatment of BMDMs with the cysteine cathepsin inhibitor E-64d did not reverse the effect of CstC deficiency on IL-1β processing and secretion, suggesting that the increased cysteine cathepsin activity determined in CstC KO BMDMs is not essential for NLRP3 inflammasome activation. The CstC deficiency had no effect on (mitochondrial) reactive oxygen species (ROS) generation, the MAPK signaling pathway or the secretion of anti-inflammatory cytokine IL-10. However, CstC-deficient BMDMs showed dysfunctional autophagy, as autophagy induction via mTOR and AMPK signaling pathways was suppressed and accumulation of SQSTM1/p62 indicated a reduced autophagic flux. Collectively, our study demonstrates that the excessive inflammatory response to the LPS-induced sepsis in CstC KO mice is dependent on increased caspase-11 expression and impaired autophagy, but is not associated with increased cysteine cathepsin activity.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0242236
Author(s):  
Yixing Wu ◽  
Heather T. Whittaker ◽  
Suzanna Noy ◽  
Karen Cleverley ◽  
Veronique Brault ◽  
...  

People with Down syndrome (DS), caused by trisomy of chromosome 21 have a greatly increased risk of developing Alzheimer’s disease (AD). This is in part because of triplication of a chromosome 21 gene, APP. This gene encodes amyloid precursor protein, which is cleaved to form amyloid-β that accumulates in the brains of people who have AD. Recent experimental results demonstrate that a gene or genes on chromosome 21, other than APP, when triplicated significantly accelerate amyloid-β pathology in a transgenic mouse model of amyloid-β deposition. Multiple lines of evidence indicate that cysteine cathepsin activity influences APP cleavage and amyloid-β accumulation. Located on human chromosome 21 (Hsa21) is an endogenous inhibitor of cathepsin proteases, CYSTATIN B (CSTB) which is proposed to regulate cysteine cathepsin activity in vivo. Here we determined if three copies of the mouse gene Cstb is sufficient to modulate amyloid-β accumulation and cathepsin activity in a transgenic APP mouse model. Duplication of Cstb resulted in an increase in transcriptional and translational levels of Cstb in the mouse cortex but had no effect on the deposition of insoluble amyloid-β plaques or the levels of soluble or insoluble amyloid-β42, amyloid-β40, or amyloid-β38 in 6-month old mice. In addition, the increased CSTB did not alter the activity of cathepsin B enzyme in the cortex of 3-month or 6-month old mice. These results indicate that the single-gene duplication of Cstb is insufficient to elicit a disease-modifying phenotype in the dupCstb x tgAPP mice, underscoring the complexity of the genetic basis of AD-DS and the importance of multiple gene interactions in disease.


2021 ◽  
Author(s):  
Nicholas J Silva ◽  
Leah C Dorman ◽  
ilia vainchtein ◽  
Nadine C Horneck ◽  
Anna V Molofsky

Microglia are brain resident macrophages that play vital roles in central nervous system (CNS) development, homeostasis, and pathology. Microglia both remodel synapses and engulf apoptotic cell corpses during development, but whether unique molecular programs regulate these distinct phagocytic functions is unknown. Here we identify a molecularly distinct synapse-associated microglial subset in the zebrafish (Danio rerio). We found that ramified microglia populated synapse-rich regions of the midbrain and hindbrain between 7 and 28 days post fertilization. In contrast, microglia in the optic tectum were ameboid and clustered around neurogenic zones. Using single-cell mRNA sequencing combined with metadata from regional bulk sequencing, we identified synapse-associated microglia (SAMs) that were highly enriched in the hindbrain, expressed known synapse modulating genes as well as novel candidates, and engulfed synaptic proteins. In contrast, neurogenic-associated microglia (NAMs) were enriched in optic tectum, had active cathepsin activity, and preferentially engulfed neuronal corpses. These data yielded a functionally annotated atlas of zebrafish microglia (https://www.annamolofskylab.org/microglia-sequencing). Furthermore, they reveal that molecularly distinct phagocytic programs mediate synaptic remodeling and cell engulfment, and establish zebrafish hindbrain as a model circuit for investigating microglial-synapse interactions.


Sign in / Sign up

Export Citation Format

Share Document