Beet western yellows virus in border parenchyma cells of Pennycress

1985 ◽  
Vol 93 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Lynn L. Hoefert
Author(s):  
Patrick Echlin ◽  
Thomas Hayes ◽  
Clifford Lai ◽  
Greg Hook

Studies (1—4) have shown that it is possible to distinguish different stages of phloem tissue differentiation in the developing roots of Lemna minor by examination in the transmission, scanning, and optical microscopes. A disorganized meristem, immediately behind the root-cap, gives rise to the vascular tissue, which consists of single central xylem element surrounded by a ring of phloem parenchyma cells. This ring of cells is first seen at the 4-5 cell stage, but increases to as many as 11 cells by repeated radial anticlinal divisions. At some point, usually at or shortly after the 8 cell stage, two phloem parenchyma cells located opposite each other on the ring of cells, undergo an unsynchronized, periclinal division to give rise to the sieve element and companion cell. Because of the limited number of cells involved, this developmental sequence offers a relatively simple system in which some of the factors underlying cell division and differentiation may be investigated, including the distribution of diffusible low atomic weight elements within individual cells of the phloem tissue.


2010 ◽  
Vol 36 (4) ◽  
pp. 392-394
Author(s):  
Zha-ru ZHANG ◽  
Zhao-an WEI ◽  
Xiao-ying PENG ◽  
Bin TAN ◽  
Shuang-de ZHOU

IAWA Journal ◽  
1996 ◽  
Vol 17 (2) ◽  
pp. 141-150 ◽  
Author(s):  
Elsa Nunes ◽  
Teresa Quilhó ◽  
Helena Pereira

The secondary phloem of Pinus pinaster Aiton bark has sieve cells and axial and radial parenchyma, but no fibres. Resin ducts are present in fusiform rays . Stiloid crystals, starch granules and tannins occur inside sieve and parenchyma cells. The rhytidome of P. pinaster bark has a variable number of periderms forming scale-type discontinuous layers over expanded parenchyma cells. Phellem comprises 4-6 layers of thickwaIled and little suberized cells and phelloderm a layer of 2 or 3 thickened lignified ceIls and a layer of expanded cells.


IAWA Journal ◽  
2009 ◽  
Vol 30 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Pat Denne ◽  
Siân Turner

Differences between the ray structure of rootwood and stemwood were analysed in 11 species from 5 families of gymnosperms. Rootwood was consistently found to have fewer ray tracheids, with ray parenchyma cells which were taller axially, wider tangentially, but shorter radially, and had more pits per cross-field than stemwood. A scale for quantifying types of cross-field pitting is proposed, and statistically significant differences in type and diameter of cross-field pitting were found between rootwood and stemwood of most species sampled. These structural differences have practical implications for identification of gymnosperm roots, and for distinguishing between rootwood and stemwood.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (10) ◽  
pp. 511-524
Author(s):  
TASLIMA FERDOUS ◽  
M.A. QUAIYYUM ◽  
KAZI M. YASIN ARAFAT ◽  
M. SARWAR JAHAN

In this paper, chia plant was characterized in terms of chemical, morphological, and anatomical properties. Chia plant was characterized with low α-cellulose (30.5%); moderate lignin (23.2%) with syringyl to guaiacyl ratio of 1.41; and shorter fiber length (0.67 mm) with thinner cell wall (1.91 μm) and good flexibility coefficient (71.44). Anatomical features showed that chia plant consists of vessels, fibers, parenchyma cells, and collenchyma cells. Chia plant pulping was evaluated in soda-anthraquinone (soda-AQ) and formic acid/peroxyformic acid (FA/PFA) processes. Chia plant was difficult to delignify in the alkaline process. The FA/PFA process produced higher pulp yield at the same kappa number than the soda-AQ process. Unbleached soda-AQ chia pulp exhibited good proper-ties in terms of tensile, bursting, and tearing strengths, even at the unrefined stage, due to high drainability of the pulps. Alkaline peroxide bleached FA/PFA pulp exhibited better papermaking properties and 2% higher brightness than the D0(EP)D1 bleached soda-AQ pulp.


1980 ◽  
Vol 58 (21) ◽  
pp. 2269-2273 ◽  
Author(s):  
H. B. Hanten ◽  
G. E. Ahlgren ◽  
J. B. Carlson

The anatomical development of the abscission zone in grains of Zizania aquatica L. was correlated with development of the embryo. The abscission zone is well developed when the embryo sac is mature. Soon after pollination, the first anatomical evidence of abscission appears as plasmolysis of the separation layer parenchyma cells. This is followed by separation of the layers by dissolution of the middle lamella and fragmentation of cell walls. Persistence of intact vascular tissue and presence of a surrounding cone-shaped mass of lignified cells may be involved in abscission of wild rice grains.


Science ◽  
1958 ◽  
Vol 127 (3289) ◽  
pp. 82-82 ◽  
Author(s):  
T. J. MUZIK
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document