5122290 Froth flotation of calcium borate minerals

1993 ◽  
Vol 6 (2) ◽  
pp. 234
1999 ◽  
Vol 28 (2) ◽  
pp. 41-46 ◽  
Author(s):  
Isao KUSACHI ◽  
Shoichi KOBAYASHI ◽  
Chiyoko HENMI ◽  
Yasushi TAKECHI

2010 ◽  
Vol 74 (6) ◽  
pp. 1013-1025 ◽  
Author(s):  
V. Bermanec ◽  
N. Tomašić ◽  
Ž. Žigovečki Gobac ◽  
M. Rajić Linarić ◽  
K. Furić

AbstractData on the dehydration of pentahydroborite, CaB2O(OH)6·2H2O and nifontovite, Ca3B6O6(OH)12·2H2O from the Fuka mine, Japan are presented. Critical temperatures of the dehydration of the borates were determined by thermogravimetric analysis/differential thermal analysis measurements. The untreated mineral samples and their heating products were investigated by X-ray diffraction and Raman spectroscopy. Upon dehydration, both minerals decompose and undergo amorphization, and at greater temperatures crystallize as an orthorhombic calcium borate, CaB2O4 (Pnca). The dehydration paths of the two minerals are different, with nifontovite showing a greater resistance to decomposition and amorphization than pentahydroborite. Differences in the dehydration processes are related to the residuals of the water content and structural accommodation of the borate polyanion.


1994 ◽  
Vol 58 (391) ◽  
pp. 279-284 ◽  
Author(s):  
Isao Kusachi ◽  
Chiyoko Henmi

AbstractNifontovite and olshanskyite, two rare hydrous calcium borate minerals, have been found in crystalline limestone near gehlenite-spurrite skarns at Fuka, Okayama Prefecture. Nifontovite occurs as aggregates of tabular crystals up to 5 cm long and 1.5 cm wide, and rarely as euhedral crystals up to 1 mm long. Olshanskyite occurs as anhedral masses, or as micro-twinned platy crystals up to 1 cm long. Wet chemical analyses give the empirical formulae Ca3.052B5.991O6.038(OH)12·1.96H2O and Ca2.888B3.997(OH)18 on the basis of O = 20 for nifontovite and OH=18 for olshanskyite, respectively. The formulae are consistent with those from type localities.The X-ray powder data for these minerals were determined with accuracy. The unit cell parameters of nifontovite agree closely with those published previously. X-ray studies show that olshanskyite is triclinic with the possible space group P1̄ or P1 and a = 9.991(5), b = 14.740(11), c = 7.975(3) Å, α = 94.53(4), β = 69.08(3), γ = 112.44(5)° and Z = 3. The density 2.19 g cm−3 (meas.) obtained for olshanskyite agrees with the estimated ideal value 2.31 g cm−3 (calc.). Nifontovite was formed by hydrothermal alteration of an anhydrous borate, and olshanskyite was formed by hydrothermal alteration of nifontovite and the anhydrous borate.


1998 ◽  
Vol 37 (6-7) ◽  
pp. 395-402
Author(s):  
Guus C. Stefess

A full-scale (470 m3) process for biological treatment of dredging spoil from the Petroleum Harbour in Amsterdam has been monitored during a pilot project. The dredging spoil was heavily polluted with polycyclic aromatic hydrocarbons (PAH) and mineral oil. The remediation chain involved dredging, transport of dredged spoil, hydrocyclone separation, froth flotation of the coarse particles, and biological treatment of the silt fraction (<20 μm) in stirred bioractors. The independent monitoring was aimed at recording the environmental effects, product quality and performance of the biological process. Hydrocyclone separation (cut point 20 m) resulted in two bulk streams: 65% sand and 30% silt (based on total dry weight of the input). The sand was cleaned and could be reused as building material. PAH and mineral oil were successfully concentrated in the silt fraction (<20 μm), which was treated biologically. Biological treatment during continuous feeding of fine fraction, at a residence time of 8-10 days for the entire bioreactor system, resulted in considerably reduced mineral oil and PAH contents. Furthermore, the leaching of organic contaminants was reduced, as well as the ecotoxicity. The obtained silt product however did not meet the demands, and had to be landfilled. Minor emissions of contaminants were measured in wastewater and offgas. The energy and chemicals consumption were acceptable. The biological process appears to be promising for the treatment of less-severely contaminated dredged material.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 340
Author(s):  
Mathew Dzingai ◽  
Malibongwe S. Manono ◽  
Kirsten C. Corin

Water scarcity necessitates the recycling of process water within mineral processing practices. This may however come with its disadvantages for unit operations such as froth flotation as this process is water intensive and sensitive to water chemistry. It is therefore important to monitor the water chemistry of the recycle stream of process water and any other water source to flotation. Monitoring the concentrations of the anions in recycled process water is therefore important to consider as these are speculated to impact flotation performance. Batch flotation tests were conducted using synthetically prepared plant water (3 SPW) with a TDS of 3069 mg/L as the baseline experiment. 3 SPW contained 528 mg/LNO3− and 720 mg/L SO42−, other anions and cations, and no S2O32−. Upon spiking 3 SPW with selected anions, viz, NO3−, SO42− and S2O32−, it was noted that NO3− and SO42− exhibited threshold concentrations while S2O32− did not show a threshold concentration for both copper and nickel grade. Spiking 3 SPW with 352 mg/L more of NO3− to a total 880 mg/L NO3− concentration resulted in the highest copper and nickel grade compared to 3 SPW while increasing the S2O32− from 60 to 78 mg/L increased nickel and copper grade. 720 to 1200 mg/L SO42− and 528 to 880 mg/L NO3− were deemed the concentration boundaries within which lies the threshold concentration above which flotation performance declines with respect to metal grades, while for S2O32− the threshold concentration lies outside the range considered for this study. Anion distribution between the pulp and the froth did not seem to impact the recovery of copper or nickel. Notably, the correlation between the concentrate grades and anion distribution between the froth and the pulp seemed to be ion dependent.


Sign in / Sign up

Export Citation Format

Share Document