Monitoring of environmental effects and process performance during biological treatment of sediment from the petroleum Harbour in Amsterdam

1998 ◽  
Vol 37 (6-7) ◽  
pp. 395-402
Author(s):  
Guus C. Stefess

A full-scale (470 m3) process for biological treatment of dredging spoil from the Petroleum Harbour in Amsterdam has been monitored during a pilot project. The dredging spoil was heavily polluted with polycyclic aromatic hydrocarbons (PAH) and mineral oil. The remediation chain involved dredging, transport of dredged spoil, hydrocyclone separation, froth flotation of the coarse particles, and biological treatment of the silt fraction (<20 μm) in stirred bioractors. The independent monitoring was aimed at recording the environmental effects, product quality and performance of the biological process. Hydrocyclone separation (cut point 20 m) resulted in two bulk streams: 65% sand and 30% silt (based on total dry weight of the input). The sand was cleaned and could be reused as building material. PAH and mineral oil were successfully concentrated in the silt fraction (<20 μm), which was treated biologically. Biological treatment during continuous feeding of fine fraction, at a residence time of 8-10 days for the entire bioreactor system, resulted in considerably reduced mineral oil and PAH contents. Furthermore, the leaching of organic contaminants was reduced, as well as the ecotoxicity. The obtained silt product however did not meet the demands, and had to be landfilled. Minor emissions of contaminants were measured in wastewater and offgas. The energy and chemicals consumption were acceptable. The biological process appears to be promising for the treatment of less-severely contaminated dredged material.

1993 ◽  
Vol 28 (8-9) ◽  
pp. 283-295 ◽  
Author(s):  
C. van Rijt

In the Netherlands large quantities of contaminated sediment have to be dredged. Because it cannot be relocated directly in the marine environment, the dredged material must be placed in special contained depots which are expensive to construct. In 1989 a programme to reduce the volume of storage space required was started. This paper includes the results of research into the physical aspects of sediment cleaning. Heavy metals are often found in the silt fraction, while organic micro pollutants occur in the silt fraction and sometimes also as tar particles in the sand fraction. The sediment can be cleaned by physical means or by the selective separation of some of the contaminants by froth flotation. Research into the efficiency of using separation on the basis of particle size to clean contaminated sediments from five different sites and also the experience gained during three sediment clean-up operations, indicated that positive effects could only be achieved in sandy sediments. In some cases, owing to the presence of tar particles in the sediment, the quality of the sand fraction was not improved after separation in hydrocyclones. They can be removed from the sand fraction by flotation. Recent developments in selective separation by means of froth flotation, using equipment specially designed for the fine fraction, are promising. The use of duo-flocculants has a favourable influence on the consolidation behaviour of the fine fraction after separation.


2016 ◽  
Vol 8 (15) ◽  
pp. 37-47
Author(s):  
Sri Moertinah ◽  
Misbachul Moenir

This study aims to create a pilot project for wastewater treatment wig industry with biological activated sludge technology to applied in the industry. Design criteria for the pilot project are the influent COD ≤ 900 mg/l, MLSS = 3,000 mg/l, 30-hours residence time. DO ≥ 2 mg/l and flow 10 m3/day. Implementation of a pilot project initiated by seeding aerobic microbes and microbial adaptation to proceed with wastewater to be treated. The trial results showed that the pilot project % COD reduction ranged from 73.2% - 91% and the result is not much different from the results of laboratory-scale research about 89.7% and the quality  of the effluent is already fullfill the standard of industrial waste water wig required by the Central Java Provincial Regulation No. 5 of 2012. The calculation of operating cost of activated sludge biological treatment which includes labor costs, electricity costs, equipment maintenance costs, expenses and other nutrients obtained the price of  Rp. 2972/m3 or Rp. 742.99/wig.ABSTRAKPenelitian ini bertujuan untuk membuat pilot project pengolahan air limbah industri rambut palsu dengan sistem lumpur aktif yang diterapkan di industri. Kriteria desain pilot project tersebut adalah COD influen ≤ 900 mg/l, MLSS = 3.000 mg/l, waktu tinggal 30 jam DO≥2 mg/l  dan debit air limbah 10 m3/hari. Pelaksanaan pilot project dimulai dengan seeding mikroba aerob dan dilanjutkan dengan adaptasi mikroba dengan air limbah yang akan diolah. Hasil uji coba pilot project menunjukkan bahwa % penurunan COD berkisar antara 73,2% - 91% dan hasil ini tidak berbeda jauh dengan hasil penelitian skala laboratorium sekitar 89,7% dan kualitas air limbah hasil pengolahan sudah memenuhi baku mutu air limbah industri rambut palsu yang dipersyaratkan oleh Peraturan Daerah Provinsi Jawa Tengah No 5 tahun 2012. Dari hasil perhitungan biaya operasional pengolahan biologis lumpur aktif yang meliputi biaya tenaga kerja, biaya listrik, biaya perawatan peralatan, biaya nutrien dan lainnya diperoleh harga sebesar Rp. 2972/m3  atau Rp. 742,99/wig.   Kata kunci : air limbah industri rambut palsu, pilot project, sistem lumpur aktif


Author(s):  
N. Zaletova ◽  
S. Zaletov

Биологический метод очистки сточных вод представляет собой сложный многокомпонентный процесс, ключевой составляющей которого является работа ферментной системы. Известно, что одним из важнейших ферментов, обеспечивающих биологический процесс, являются дегидрогеназы. Полностью сложнейший механизм действия ферментов до конца пока не раскрыт, однако в практике контроля процессов биологической очистки используется показатель дегидрогеназной активности ила. Результаты исследований позволили дополнить имеющуюся информацию фактическими данными о взаимообусловленности уровня дегидрогеназной активности ила и показателей отдельных технологических параметров биологической очистки. Показано, что режим работы аэротенков (нагрузка на ил, доза активного ила и др.) и величина показателей исходной дегидрогеназной активности и дегидрогеназной активности этого же образца ила со слабо концентрированным раствором (ДАИН2О) связаны между собой и зависят от нагрузки на ил по органическим веществам. Полученные результаты исследования могут быть использованы для контроля биологического процесса очистки сточных вод.The biological method of wastewater treatment is a comprehensive multicomponent process the activities of the enzyme system being the key component of it. It is known that dehydrogenases have been one of the most important enzymes the ensure the biological process. The complicated mechanism of the action of enzymes has not been fully described so far however, in the practice of monitoring biological treatment processes, an indicator of the dehydrogenase activity of sludge is used. The research results provided for supplementing the available information with actual data on the interdependence of the level of dehydrogenase activity of sludge and indicators of individual process parameters of biological treatment. It was shown that the mode of operation of aeration tanks (organic matter load on sludge, dose of activated sludge, etc.) and the values of the initial dehydrogenase activity and dehydrogenase activity of the same sludge sample with weakly concentrated solution (DASН2О) are interconnected and depend on the organic load on sludge. The results of the study can be used to control the biological process of wastewater treatment.The biological method of wastewater treatment is a comprehensive multicomponent process the activities of the enzyme system being the key component of it. It is known that dehydrogenases have been one of the most important enzymes the ensure the biological process. The complicated mechanism of the action of enzymes has not been fully described so far however, in the practice of monitoring biological treatment processes, an indicator of the dehydrogenase activity of sludge is used. The research results provided for supplementing the available information with actual data on the interdependence of the level of dehydrogenase activity of sludge and indicators of individual process parameters of biological treatment. It was shown that the mode of operation of aeration tanks (organic matter load on sludge, dose of activated sludge, etc.) and the values of the initial dehydrogenase activity and dehydrogenase activity of the same sludge sample with weakly concentrated solution (DASН2О) are interconnected and depend on the organic load on sludge. The results of the study can be used to control the biological process of wastewater treatment.


1996 ◽  
Vol 31 (2) ◽  
pp. 411-432 ◽  
Author(s):  
Michael E. Comba ◽  
Janice L. Metcalfe-Smith ◽  
Klaus L.E. Kaiser

Abstract Zebra mussels were collected from 24 sites in Lake Erie, Lake Ontario and the St. Lawrence River between 1990 and 1992. Composite samples of whole mussels (15 sites) or soft tissues (9 sites) were analyzed for residues of organochlo-rine pesticides and PCBs to evaluate zebra mussels as biomonitors for organic contaminants. Mussels from most sites contained measurable quantities of most of the analytes. Mean concentrations were (in ng/g, whole mussel dry weight basis) 154 ΣPCB, 8.4 ΣDDT, 3.5 Σchlordane, 3.4 Σaldrin, 1.4 ΣBHC, 1.0 Σendosulfan, 0.80 mirex and 0.40 Σchlorobenzene. Concentrations varied greatly between sites, i.e., from 22 to 497 ng/g for ΣPCB and from 0.08 to 11.6 ng/g for ΣBHC, an indication that mussels are sensitive to different levels of contamination. Levels of ΣPCB and Σendosulfan were highest in mussels from the St. Lawrence River, whereas mirex was highest in those from Lake Ontario. Overall, mussels from Lake Erie were the least contaminated. These observations agree well with the spatial contaminant trends shown by other biomoni-toring programs. PCB congener class profiles in zebra mussels are also typical for nearby industrial sources, e.g., mussels below an aluminum casting plant contained 55% di-, tri- and tetrachlorobiphenyls versus 31% in those upstream. We propose the use of zebra mussels as biomonitors of organic contamination in the Great Lakes.


2021 ◽  
Vol 13 (15) ◽  
pp. 8172
Author(s):  
Kechen Wang ◽  
Xiangyu Chu ◽  
Jiao Lin ◽  
Qilin Yang ◽  
Zepeng Fan ◽  
...  

Tire—pavement interaction behaviours result in large amounts of wearing waste matter, which attaches to the surface of the pavement and is directly exposed to the surrounding environment. This kind of matter imposes a great challenge to the environment of the road area. The current study is devoted to carrying out a comprehensive investigation of the formation mechanism of tire—pavement wearing waste (TPWW), as well as the resulting environmental risks. A self-developed piece of accelerated polishing equipment, the Harbin advanced polishing machine (HAPM), was employed to simulate the wearing process between vehicle tires and pavement surfaces, and the TPWW was collected to conduct morphological, physical, and chemical characterisations. The results from this study show that the production rate of TPWW decreases with the increase in polishing duration, and the coarse particles (diameters greater than 0.425 mm) account for most of the TPWW obtained. The fine fraction (diameter smaller than 0.425 mm) of the TPWW comprises variously sized and irregularly shaped rubber particles from the tire, as well as uniformly sized and angular fine aggregates. The environmental analysis results show that volatile alkanes (C9–C16) are the major organic contaminants in TPWW. The Open-Graded Friction Course (OGFC) asphalt mixture containing crumb rubber as a modifier showed the highest risk of heavy metal pollution, and special concern must be given to tire materials for the purpose of improving the environmental conditions of road areas. The use of polyurethane as a binder material in the production of pavement mixtures has an environmental benefit in terms of pollution from both organic contaminants and heavy metals.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Kadriann Tamm ◽  
Zeinab Arab Zadeh ◽  
Rein Kuusik ◽  
Juha Kallas ◽  
Jason Yang ◽  
...  

Phosphorus is an essential and non-substitutable element for the cellular processes of all living organisms. The main source of phosphorus in the biosphere is phosphate rock. With more than 700 Mt phosphate rock, Estonia holds the largest sedimentary phosphate rock deposits in the European Union. Estonian phosphate rock is particularly outstanding due to its remarkably low content of hazardous heavy metals such as Cadmium (<5 ppm) and trace elements of Uranium (<50 ppm). It is also a reliable source of valuable elements such as rear earth elements (REEs). The aim of this study was to investigate the distribution of the main minerals (apatite and quartz) between slimes, tailings, and concentrates that formed at the froth flotation of Estonian phosphate rock with the up-to-date level of know-how and techniques. Subsequently, the relationship between the obtained grades and recovery levels in concentrates was determined based on the collector dosage and flotation duration. It was observed that the fine fraction of the tailings contains 17.9–33.49 wt% P2O5 that can be added to the final product. Moreover, it was found that, with the lower dosage of the collector, the extended flotation time does not influence the phosphate grade and a high amount of quartz remains in the concentrates. It was also shown that, by raising the collector dosage and setting the flotation time, an adequate grade (>32 wt% P2O5) and recovery (up to 98%) can be gained. The results showed that Estonian phosphate rock can be beneficiated to produce a high-quality concentrate at high recovery levels by modifying the main flotation parameters depending on the properties of the ore.


2021 ◽  
Vol 3 (2) ◽  
pp. 130-140
Author(s):  
Maria Diana Puiu ◽  

The food industry wastewater is known to present a high organic matter content, due to specific raw materials and processing activities. Even if these compounds are not directly toxic to the environment, high concentrations in effluents could represent a source of pollution as discharges of high biological oxygen demand may impact receiving river's ecosystems. Identifying the main organic contaminants in wastewater samples represents the first step in establishing the optimum treatment method. The sample analysis for the non-target compounds through the GC-MS technique highlights, along with other analytical parameters, the efficiency of the main physical and biological treatment steps of the middle-size Wastewater Treatment Plant (WWTP). Long-chain fatty acids and their esters were the main abundant classes of non-target identified compounds. The highest intensity detection signal was reached by n-hexadecanoic acid or palmitic acid, a component of palm oil, after the physical treatment processes with dissolved air flotation, and by 1-octadecanol after biological treatment.


2003 ◽  
Vol 47 (1) ◽  
pp. 271-276 ◽  
Author(s):  
Y. Zhang ◽  
H. Shi ◽  
Y. Qian

Printing ink wastewater is usually very difficult to treat biologically and its chemical oxygen demand (COD) far exceeds standards of discharge. The COD in wastewater is usually 3,000 to 8,000 mg/L after flocculation and sedimentation. Herein, a strain of bacterium was isolated from the sludge and identified as Bacillus sp. and utilized to treat printing ink wastewater. The application of bacteria to degrade printing ink in wastewater is discussed in this paper. The influence of N and P sources on COD removal, and COD removal in combination with glucose was also discussed. More than 85 per cent of the COD could be removed using the proposed biological process. A novel internal airlift loop bioreactor with bacteria immobilized onto ceramic honeycomb support was used for the wastewater treatment.


2012 ◽  
Vol 66 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Mouhamed el khames Saad ◽  
Younes Moussaoui ◽  
Asma Zaghbani ◽  
Imen Mosrati ◽  
Elimame Elaloui ◽  
...  

The present paper presents the main results of the biodegradation study of paper industry wastewater through physico-chemical treatment. Indeed, around 60% of chemical oxygen demand (COD) removal can be achieved by electroflocculation treatment. Furthermore, a removal efficiency of the COD of almost 91% has been obtained by biological treatment, with activated amount of sludge for 24 h of culture. Concerning the physico-chemical pre-treatment of the untreated, filtered and electroflocculated rejection effluents, it has been investigated through the degradation curve of COD studies.


Sign in / Sign up

Export Citation Format

Share Document