scholarly journals Sensitivity analysis of general performance measures of queueing networks with state-dependent service rates

1991 ◽  
Vol 4 (4) ◽  
pp. 57-60 ◽  
Author(s):  
Xi-Ren Cao ◽  
Dye-Jyun Ma
1982 ◽  
Vol 14 (03) ◽  
pp. 654-671 ◽  
Author(s):  
T. C. Brown ◽  
P. K. Pollett

We consider single-class Markovian queueing networks with state-dependent service rates (the immigration processes of Whittle (1968)). The distance of customer flows from Poisson processes is estimated in both the open and closed cases. The bounds on distances lead to simple criteria for good Poisson approximations. Using the bounds, we give an asymptotic, closed network version of the ‘loop criterion' of Melamed (1979) for an open network. Approximation of two or more flows by independent Poisson processes is also studied.


1982 ◽  
Vol 14 (3) ◽  
pp. 654-671 ◽  
Author(s):  
T. C. Brown ◽  
P. K. Pollett

We consider single-class Markovian queueing networks with state-dependent service rates (the immigration processes of Whittle (1968)). The distance of customer flows from Poisson processes is estimated in both the open and closed cases. The bounds on distances lead to simple criteria for good Poisson approximations. Using the bounds, we give an asymptotic, closed network version of the ‘loop criterion' of Melamed (1979) for an open network. Approximation of two or more flows by independent Poisson processes is also studied.


1990 ◽  
Vol 22 (1) ◽  
pp. 178-210 ◽  
Author(s):  
Xi-Ren Cao

The paper studies the sensitivity of the throughput with respect to a mean service rate in a closed queueing network with exponentially distributed service requirements and state-dependent service rates. The study is based on perturbation analysis of queueing networks. A new concept, the realization factor of a perturbation, is introduced. The properties of realization factors are discussed, and a set of equations specifying the realization factors are derived. The elasticity of the steady state throughput with respect to a mean service rate equals the product of the steady state probability and the corresponding realization factor. This elasticity can be estimated by applying a perturbation analysis algorithm to a sample path of the system. The sample path elasticity of the throughput with respect to a mean service rate converges with probability 1 to the elasticity of the steady state throughput. The theory provides an analytical method of calculating the throughput sensitivity and justifies the application of perturbation analysis.


1990 ◽  
Vol 22 (01) ◽  
pp. 178-210 ◽  
Author(s):  
Xi-Ren Cao

The paper studies the sensitivity of the throughput with respect to a mean service rate in a closed queueing network with exponentially distributed service requirements and state-dependent service rates. The study is based on perturbation analysis of queueing networks. A new concept, the realization factor of a perturbation, is introduced. The properties of realization factors are discussed, and a set of equations specifying the realization factors are derived. The elasticity of the steady state throughput with respect to a mean service rate equals the product of the steady state probability and the corresponding realization factor. This elasticity can be estimated by applying a perturbation analysis algorithm to a sample path of the system. The sample path elasticity of the throughput with respect to a mean service rate converges with probability 1 to the elasticity of the steady state throughput. The theory provides an analytical method of calculating the throughput sensitivity and justifies the application of perturbation analysis.


1994 ◽  
Vol 26 (02) ◽  
pp. 436-455 ◽  
Author(s):  
W. Henderson ◽  
B. S. Northcote ◽  
P. G. Taylor

It has recently been shown that networks of queues with state-dependent movement of negative customers, and with state-independent triggering of customer movement have product-form equilibrium distributions. Triggers and negative customers are entities which, when arriving to a queue, force a single customer to be routed through the network or leave the network respectively. They are ‘signals' which affect/control network behaviour. The provision of state-dependent intensities introduces queues other than single-server queues into the network. This paper considers networks with state-dependent intensities in which signals can be either a trigger or a batch of negative customers (the batch size being determined by an arbitrary probability distribution). It is shown that such networks still have a product-form equilibrium distribution. Natural methods for state space truncation and for the inclusion of multiple customer types in the network can be viewed as special cases of this state dependence. A further generalisation allows for the possibility of signals building up at nodes.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
F. R. B. Cruz ◽  
T. van Woensel

This review provides an overview of the queueing modeling issues and the related performance evaluation and optimization approaches framed in a joined manufacturing and product engineering. Such networks are represented as queueing networks. The performance of the queueing networks is evaluated using an advanced queueing network analyzer: the generalized expansion method. Secondly, different model approaches are described and optimized with regard to the key parameters in the network (e.g., buffer and server sizes, service rates, and so on).


2017 ◽  
Vol 49 (2) ◽  
pp. 603-628 ◽  
Author(s):  
Ramtin Pedarsani ◽  
Jean Walrand ◽  
Yuan Zhong

Abstract Modern processing networks often consist of heterogeneous servers with widely varying capabilities, and process job flows with complex structure and requirements. A major challenge in designing efficient scheduling policies in these networks is the lack of reliable estimates of system parameters, and an attractive approach for addressing this challenge is to design robust policies, i.e. policies that do not use system parameters such as arrival and/or service rates for making scheduling decisions. In this paper we propose a general framework for the design of robust policies. The main technical novelty is the use of a stochastic gradient projection method that reacts to queue-length changes in order to find a balanced allocation of service resources to incoming tasks. We illustrate our approach on two broad classes of processing systems, namely the flexible fork-join networks and the flexible queueing networks, and prove the rate stability of our proposed policies for these networks under nonrestrictive assumptions.


Sign in / Sign up

Export Citation Format

Share Document