electron neutrinos
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 382
Author(s):  
Armen Sedrakian ◽  
Arus Harutyunyan

Finite-temperature equation of state (EoS) and the composition of dense nuclear and hypernuclear matter under conditions characteristic of neutron star binary merger remnants and supernovas are discussed. We consider both neutrino free-streaming and trapped regimes which are separated by a temperature of a few MeV. The formalism is based on covariant density functional (CDF) theory for the full baryon octet with density-dependent couplings, suitably adjusted in the hypernuclear sector. The softening of the EoS with the introduction of the hyperons is quantified under various conditions of lepton fractions and temperatures. We find that Λ, Ξ−, and Ξ0 hyperons appear in the given order with a sharp density increase at zero temperature at the threshold being replaced by an extended increment over a wide density range at high temperatures. The Λ hyperon survives in the deep subnuclear regime. The triplet of Σs is suppressed in cold hypernuclear matter up to around seven times the nuclear saturation density, but appears in significant fractions at higher temperatures, T≥20 MeV, in both supernova and merger remnant matter. We point out that a special isospin degeneracy point exists where the baryon abundances within each of the three isospin multiplets are equal to each other as a result of (approximate) isospin symmetry. At that point, the charge chemical potential of the system vanishes. We find that under the merger remnant conditions, the fractions of electron and μ-on neutrinos are close and are about 1%, whereas in the supernova case, we only find a significant fraction (∼10%) of electron neutrinos, given that in this case, the μ-on lepton number is zero.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Jiwon Woo ◽  
Gyuhyeon Lee

Matter-dominant universe cannot be explained with the Standard Model. In order to understand why the current universe mainly consists of matter particles, scientists turned their attention to neutrino oscillations, and conducted research on the properties of the particle and its potential relationship with the matter-antimatter asymmetry observed in the universe. In this research, the probability function of a neutrino oscillation was studied for 2-neutrino case to understand neutrino oscillation in particle accelerator experiments. For a more practical study, the neutrino oscillation probability function was calculated for two neutrino experiments and was used to verify neutrino detector positions and calculated ∆m2 which is mass difference between oscillating two different neutrinos. From this work, it was understood that detectors are located at positions with the highest probability for detecting neutrino oscillations, and it was also confirmed that neutrino were oscillating from muon neutrinos to electron neutrinos in particle accelerator experiments.


Author(s):  
Irene Tamborra ◽  
Shashank Shalgar

Neutrino–neutrino refraction dominates the flavor evolution in core-collapse supernovae, neutron star mergers, and the early Universe. Ordinary neutrino flavor conversions develop on timescales determined by the vacuum oscillation frequency. However, when the neutrino density is large enough, collective flavor conversions may arise because of pairwise neutrino scattering. Pairwise conversions are deemed fast because they are expected to occur on timescales that depend on the neutrino–neutrino interaction energy (i.e., on the neutrino number density) and are regulated by the angular distributions of electron neutrinos and antineutrinos. The enigmatic phenomenon of fast pairwise conversions has been overlooked for a long time. However, because of the fast conversion rate, pairwise conversions could occur in the proximity of the neutrino decoupling region with yet-to-be-understood implications for the hydrodynamics of astrophysical sources and the synthesis of the heavy elements. We review the physics of this fascinating phenomenon and its implications for neutrino-dense sources. Expected final online publication date for the Annual Review of Nuclear and Particle Science, Volume 71 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Cédric Delaunay ◽  
Teng Ma ◽  
Yotam Soreq

Abstract We consider models of decaying spin-1 dark matter whose dominant coupling to the standard model sector is through a dark-Higgs Yukawa portal connecting a TeV-scale vector-like lepton to the standard model (right-handed) electron. Below the electron-positron threshold, dark matter has very slow, loop-suppressed decays to photons and (electron) neutrinos, and is stable on cosmological time-scale for sufficiently small gauge coupling values. Its relic abundance is set by in-equilibrium dark lepton decays, through the freeze-in mechanism. We show that this model accommodates the observed dark matter abundance for natural values of its parameters and a dark matter mass in the ∼ 5 keV to 1 MeV range, while evading constraints from direct detection, indirect detection, stellar cooling and cosmology. We also consider the possibility of a nonzero gauge kinetic mixing with the standard model hypercharge field, which is found to yield a mild impact on the model’s phenomenology.


2019 ◽  
Vol 34 (33) ◽  
pp. 1950227 ◽  
Author(s):  
O. M. Boyarkin ◽  
I. O. Boyarkina

Opportunity of the solar flares (SFs) prediction observing the solar neutrino fluxes is investigated. In three neutrino generations, the evolution of the neutrino flux traveling the coupled sunspots (CSs) which are the SF source is considered. It is assumed that the neutrinos possess both the dipole magnetic moment and the anapole moment while the magnetic field above the CSs may reach the values [Formula: see text] Gs, display the twisting nature and posses the nonpotential character. The possible resonance conversions of the solar neutrino flux are examined. Since the [Formula: see text] resonance takes place before the convective zone, its existence can in no way be connected with the SF. However, when the solar neutrino flux moves through the CSs in the preflare period, then it may undergo the additional resonance conversions and, as a result, depleting the electron neutrinos flux may be observed.


2019 ◽  
Vol 34 (29) ◽  
pp. 1950175 ◽  
Author(s):  
V. V. Khruschov ◽  
S. V. Fomichev

A phenomenological model with active and sterile neutrinos is used for calculations of neutrino oscillation characteristics at the normal mass hierarchy of active neutrinos. Taking into account the contributions of sterile neutrinos, appearance and survival probabilities for active neutrinos are calculated. Modified graphical dependencies for the probability of appearance of electron neutrinos/antineutrinos in muon neutrino/antineutrino beams as a function of the ratio of the distance to the neutrino energy and other model parameters are obtained. It is shown that in the case of a certain type mixing between active and sterile neutrinos it is possible to describe all anomalies of neutrino data at short distances with the same model parameters. A new parametrization for a particular type mixing matrix of active and sterile neutrinos that takes into account the additional sources of CP violation is used. The comparison with the existing experimental data is performed and, using this knowledge, the estimates of some model parameters are found. The theoretical results obtained for mixing of active and sterile neutrinos can be applied for interpretation and prediction of results of ground-based experiments on search of sterile neutrinos as well as for the analysis of some astrophysical data.


2019 ◽  
Vol 206 ◽  
pp. 09009
Author(s):  
Ha Nguyen Thi Kim ◽  
Van Nguyen Thi Hong ◽  
Son Cao Van

Neutrinos are neutral leptons and there exist three types of neutrinos (electron neutrinos νe, muon neutrinos νµ and tau neutrinos ντ). These classifications are referred to as neutrinos’s “flavors”. Oscillations between the different flavors are known as neutrino oscillations, which occurs when neutrinos have mass and non-zero mixing. Neutrino mixing is governed by the PMNS mixing matrix. The PMNS mixing matrix is constructed as the product of three independent rotations. With that, we can describe the numerical parameters of the matrix in a graphical form called the unitary triangle, giving rise to CP violation. We can calculate the four parameters of the mixing matrix to draw the unitary triangle. The area of the triangle is a measure of the amount of CP violation.


Sign in / Sign up

Export Citation Format

Share Document