scholarly journals REVIEW OF SOLAR NEUTRINO EXPERIMENTS

2004 ◽  
Vol 19 (08) ◽  
pp. 1167-1179 ◽  
Author(s):  
A. BELLERIVE

This paper reviews the constraints on the solar neutrino mixing parameters with data collected by the Homestake, SAGE, GALLEX, Kamiokande, SuperKamiokande, and SNO experiments. An emphasis will be given to the global solar neutrino analyses in terms of matter-enhanced oscillation of two active flavors. The results to-date, including both solar model dependent and independent measurements, indicate that electron neutrinos are changing to other active types on route to the Earth from the Sun. The total flux of solar neutrinos is found to be in very good agreement with solar model calculations. Future measurements will focus on greater accuracy for mixing parameters and on better sensitivity to low neutrino energies.

1991 ◽  
Vol 06 (01) ◽  
pp. 15-20 ◽  
Author(s):  
T. K. KUO ◽  
JAMES PANTALEONE

The results of recent data from the 37 Cl , Kamiokande-II (K-II) and 71 Ga solar neutrino experiments are quantitatively analyzed. The results suggest that non-standard neutrino properties, instead of a non-standard solar model, are the correct explanation for the "solar neutrino problem." Assuming resonant neutrino oscillations, it is found that the "non-adiabatic" and "large angle" solutions are in quite good agreement with the data. The implications of these solutions for forthcoming solar neutrino experiments are discussed.


1993 ◽  
Vol 08 (14) ◽  
pp. 1273-1284 ◽  
Author(s):  
JOÃO PULIDO

The possibility of unconventional neutrino scattering in the Sun via flavor changing neutral currents as a possible source of the solar neutrino deficit is investigated. If the effect is really significant, a resonant process will occur. Taking into account the neutrino deficit reported by the solar neutrino experiments (Kamiokande II, SAGE Gallex), one finds Δ2m21 = (0.6–1.4) × 10−5 eV 2 with no vacuum mixing and 0.16 ≤ fex ≤ 0.34 where fex is the lepton violating coupling. Our understanding of the neutrino phenomenon in the Sun may be improved through accuracy improvements in experiments measuring νee− elastic scattering or others searching for exotic lepton decays.


1990 ◽  
Vol 121 ◽  
pp. 179-186 ◽  
Author(s):  
K. S. Hirata ◽  
T. Kajita ◽  
T. Kifune ◽  
K. Kihara ◽  
M. Nakahata ◽  
...  

AbstractThe observation of 8B solar Neutrinos in the Kamiokande-II detector is presented. Based on 450 days of data in the time period of January 1987 through May 1988, the measured flux obtained with Ee ≥ 9.3 MeV was 0.46 ± 0.13 (stat) ± 0.08 (sys) of the value predicted by the standard solar model. The detector and analysis methods were improved since June 1988 and the background level has been decreased by a factor of about three since then.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Ankush ◽  
Rishu Verma ◽  
Gazal Sharma ◽  
B. C. Chauhan

There are compelling evidences for the existence of a fourth degree of freedom of neutrinos, i.e., sterile neutrino. In the recent studies the role of sterile component of neutrinos has been found to be crucial, not only in particle physics, but also in astrophysics and cosmology. This has been proposed to be one of the potential candidates of dark matter. In this work we investigate the updated solar neutrino data available from all the relevant experiments including Borexino and KamLAND solar phase in a model independent way and obtain bounds on the sterile neutrino component present in the solar neutrino flux. The mystery of the missing neutrinos is further deepening as subsequent experiments are coming up with their results. The energy spectrum of solar neutrinos, as predicted by Standard Solar Models (SSM), is seen by neutrino experiments at different parts as they are sensitive to various neutrino energy ranges. It is interesting to note that more than 98% of the calculated standard model solar neutrino flux lies below 1 MeV. Therefore, the study of low energy neutrinos can give us better understanding and the possibility of knowing about the presence of antineutrino and sterile neutrino components in solar neutrino flux. As such, this work becomes interesting as we include the data from medium energy (~1 MeV) experiments, i.e., Borexino and KamLAND solar phase. In our study we retrieve the bounds existing in literature and rather provide more stringent limits on sterile neutrino (νs) flux available in solar neutrino data.


1993 ◽  
Vol 137 ◽  
pp. 100-107
Author(s):  
Douglas R.O. Morrison

AbstractSolar Evolutionary Models are briefly reviewed and while the models are robust, there are uncertainties in the input data which justify rather larger errors. The 1992 experimental results from GALLEX, SAGE II and Kamiokande are shown to be consistent with calculated fluxes of solar neutrinos whereas the Chlorine results continue to be significantly low though this experiment has a problem with the high variability with time of its results in contradiction to Kamiokande. It is concluded that the evidence for a solar neutrino problem is not compelling and New Physics are not demanded. Further experiments are essential to search for neutrino masses and to study the Sun.


2003 ◽  
Vol 18 (22) ◽  
pp. 3761-3776 ◽  
Author(s):  
JOHN N. BAHCALL

I will summarize in four slides the 40 years of development of the standard solar model that is used to predict solar neutrino fluxes and then describe the current uncertainties in the predictions. I will dispel the misconception that the p-p neutrino flux is determined by the solar luminosity and present a related formula that gives, in terms of the p-p and 7 Be neutrino fluxes, the ratio of the rates of the two primary ways of terminating the p-p fusion chain. I will also attempt to explain why it took so long, about three and a half decades, to reach a consensus view that new physics is being learned from solar neutrino experiments. Finally, I close with a personal confession and some personal remarks.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Deniz Yilmaz

The combined effect of spin-flavor precession (SFP) and the nonstandard neutrino interaction (NSI) on the survival probability of solar electron neutrinos (assumed to be Dirac particles) is examined for various values ofϵ11,ϵ12, andμB. It is found that the neutrino survival probability curves affected by SFP and NSI effects individually for some values of the parameters (ϵ11,ϵ12, andμB) get close to the standard MSW curve when both effects are combined. Therefore, the combined effect of SFP and NSI needs to be taken into account when the solar electron neutrino data obtained by low energy solar neutrino experiments is investigated.


1987 ◽  
Vol 02 (11) ◽  
pp. 827-834 ◽  
Author(s):  
HISAKAZU MINAKATA ◽  
HIROSHI NUNOKAWA ◽  
KIYOSHI SHIRAISHI ◽  
HIROSHI SUZUKI

It is shown that by taking the effect of the Earth into account the possible observation of electron neutrinos from the supernova SN1987A at the Kamiokande II is compatible with the solution of the solar neutrino puzzle by the Mikheyev-Smirnov-Wolfenstein mechanism. Our scenario requires relatively large mixing angles sin 2 2θ ≳ 0.3 and, most probably, ∆m2 of the order of 10−6 ~ 10−5 (eV) 2. The implications of possible observation in other neutrino detectors are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document