Quantal analysis of single presynaptic boutons of glutamatergic synapses in thin slices from rat neostriatum

1992 ◽  
Vol 17 ◽  
pp. 77
Author(s):  
A. Mori ◽  
T. Takahashi ◽  
Y. Miyashita ◽  
H. Kasai
2018 ◽  
Author(s):  
Sheila Hoffmann ◽  
Marta Orlando ◽  
Ewa Andrzejak ◽  
Thorsten Trimbuch ◽  
Christian Rosenmund ◽  
...  

AbstractThe regulated turnover of synaptic vesicle (SV) proteins is thought to involve the ubiquitin dependent tagging and degradation through endo-lysosomal and autophagy pathways. Yet, it remains unclear which of these pathways are used, when they become activated and whether SVs are cleared en-mass together with SV proteins or whether both are degraded selectively. Equally puzzling is how quickly these systems can be activated and whether they function in real time to support synaptic health. To address these questions, we have developed an imaging based system that simultaneously tags presynaptic proteins while monitoring autophagy. Moreover, by tagging SV proteins with a light activated reactive oxygen species (ROS) generator, Supernova, it was possible to temporally control the damage to specific SV proteins and assess their consequence to autophagy mediated clearance mechanisms and synaptic function. Our results show that, in mouse hippocampal neurons, presynaptic autophagy can be induced in as little as 5-10 minutes and eliminates primarily the damaged protein rather than the SV en-mass. Importantly, we also find that autophagy is essential for synaptic function, as light-induced damage to e.g. Synaptophysin only compromises synaptic function when autophagy is simultaneously blocked. These data support the concept that presynaptic boutons have a robust highly regulated clearance system to maintain not only synapse integrity, but also synaptic function.Significance StatementThe real-time surveillance and clearance of synaptic proteins is thought to be vital to the health, functionality and integrity of vertebrate synapses and is compromised in neurodegenerative disorders, yet the fundamental mechanisms regulating these systems remain enigmatic. Our analysis reveals that presynaptic autophagy is a critical part of a real-time clearance system at glutamatergic synapses capable of responding to local damage of synaptic vesicle proteins within minutes and to be critical for the ongoing functionality of these synapses. These data indicate that synapse autophagy is not only locally regulated but also crucial for the health and functionality of vertebrate presynaptic boutons.


2021 ◽  
Author(s):  
Maria Rita Karlocai ◽  
Judit Heredi ◽  
Tünde Benedek ◽  
Noemi Holderith ◽  
Andrea Lorincz ◽  
...  

AbstractThe molecular mechanisms underlying the diversity of cortical glutamatergic synapses is still only partially understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons followed by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High resolution molecular analysis of functionally characterized synapses reveals highly variable Munc13-1 content of AZs that possess the same N. Replica immunolabeling also shows a 3-fold variability in the Munc13-1 content of AZs of identical size. Munc13-1 is clustered within the AZs; cluster size and density are also variable. Our results provide evidence for quantitative molecular heterogeneity of RSs and support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but independent RSs.


2021 ◽  
Author(s):  
Meghana Bhimreddy ◽  
Emma Rushton ◽  
Danielle L. Kopke ◽  
Kendal Broadie

The synaptic cleft manifests enriched glycosylation, with structured glycans coordinating signaling between presynaptic and postsynaptic cells. Glycosylated signaling ligands orchestrating communication are tightly regulated by secreted glycan-binding lectins. Using the Drosophila neuromuscular junction (NMJ) as a model glutamatergic synapse, we identify a new Ca2+-binding (C-type) lectin, Lectin-galC1 (LGC1), which modulates presynaptic function and neurotransmission strength. We find that LGC1 is enriched in motoneuron presynaptic boutons and secreted into the NMJ extracellular synaptomatrix. We show that LGC1 limits locomotor peristalsis and coordinated movement speed, with a specific requirement for synaptic function, but not NMJ architecture. LGC1 controls neurotransmission strength by limiting presynaptic active zone (AZ) and postsynaptic glutamate receptor (GluR) aligned synapse number, reducing both spontaneous and stimulation-evoked synaptic vesicle (SV) release, and capping SV cycling rate. During high-frequency stimulation (HFS) mutants have faster synaptic depression and impaired recovery while replenishing depleted SV pools. Although LGC1 removal increases the number of glutamatergic synapses, we find LGC1 null mutants exhibit decreased SV density within presynaptic boutons, particularly SV pools at presynaptic active zones. Thus, LGC1 regulates NMJ neurotransmission to modulate coordinated movement.


Sign in / Sign up

Export Citation Format

Share Document