Relation between critical disk speed for foam-breaking of rotating-disk mechanical foam-breakers and foaming characteristics of solutions

1994 ◽  
Vol 77 (2) ◽  
pp. 221-223 ◽  
Author(s):  
Satoshi Takesono ◽  
Masayuki Onodera ◽  
Kazuaki Yamagiwa ◽  
Akihiko Mori ◽  
Akira Ohkawa
1960 ◽  
Vol 82 (3) ◽  
pp. 539-549 ◽  
Author(s):  
L. A. Maroti ◽  
G. Deak ◽  
F. Kreith

The flow of air in the space between a rotating disk and a stationary side wall placed parallel to its surface has been investigated over a range of Reynolds numbers from 3 × 105 to 6 × 106 at clearance-to-diameter ratios from 0.0125 to 0.0625. When the size of the stationary side wall was larger than the diameter of the rotating disk the flow in the gap was found to be periodic; several distinct and separate inflow and outflow regions were observed to rotate in the same direction as the disk, but at a slower speed. The number of flow regions was found to be a function of the disk speed and the gap size. The frictional torque on the housing was also measured and the effect of source flow on the flow pattern was studied qualitatively.


2004 ◽  
Vol 38 (12) ◽  
pp. 1161-1170 ◽  
Author(s):  
Z. Sun ◽  
R. L. Axelbaum ◽  
R. W. Davis

1996 ◽  
Vol 451 ◽  
Author(s):  
S. D. Leith ◽  
D. T. Schwartz

ABSTRACTDescribed are results showing that an oscillating flow-field can induce spatially periodic composition variations in electrodeposited NiFe films. Flow-induced NiFe composition modulated alloys (CMA's) were deposited on the disk of a rotating disk electrode by oscillating the disk rotation rate during galvanostatic plating. Deposit composition and structure were investigated using potentiostatic stripping voltammetry and scanning probe microscopy. Results illustrate a linear relationship between the composition modulation wavelength and the flow oscillation period. CMA's with wavelengths less than 10 nm can be fabricated when plating with a disk rotation rate oscillation period less than 3 seconds.


2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


Sign in / Sign up

Export Citation Format

Share Document