Elastic and inelastic analysis of reinforced concrete structures using the boundary element method

1988 ◽  
Vol 5 (3) ◽  
pp. 146-154 ◽  
Author(s):  
N Rao
2013 ◽  
Vol 686 ◽  
pp. 261-265 ◽  
Author(s):  
M. Ihsan ◽  
Syarizal Fonna ◽  
M. Ridha ◽  
Syifaul Huzni ◽  
A.K. Arrifin

The corrosion of structures is needed to be identified early to prevent any severe damage of buildings. The conventional technique such as potential mapping for diagnosing of reinforced concrete corrosion has been used widely in the field. However, the method has limitation such as less accuracy, laborious and time-consuming. This study is conducted to develop boundary element method 3 dimensions by considering polarization curves of anode and cathode for corrosion simulation and analyzed the influences of anode profiles for RC corrosion simulation. In this method, the potential in concrete domain was modeled by Laplace’s equation. The anode and cathode areas were represented by each polarization curves. The numerical simulation result shows that the boundary element method 3 dimensions successfully solved the Laplace’s equation in order to simulate corrosion phenomenon of reinforced concrete. The influences of anode profiles for RC corrosion simulation have been analyzed. Further works are needed to reduce the computational effort of corrosion simulation.


1980 ◽  
Vol 47 (2) ◽  
pp. 291-296 ◽  
Author(s):  
M. Morjaria ◽  
S. Mukherjee

A numerical scheme for time-dependent inelastic analysis of transverse deflection of plates of arbitrary shape by the boundary element method is presented in this paper. The governing differential equation is the inhomogeneous biharmonic equation for the rate of small transverse deflection. This complicated boundary-value problem for an arbitrarily shaped plate is solved by using a novel combination of the boundary element method and finite-element methodology. The number of unknowns, however, depends upon the boundary discretization and is therefore less than in a finite-element model. A combined creep-plasticity constitutive theory with state variables is used to model material behavior. The computer code developed can solve problems for an arbitrarily shaped plate with clamped or simply supported boundary conditions and an arbitrary loading history. Some illustrative numerical results for clamped and simply supported rectangular and triangular plates, under various loading histories, are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document