Evidence of inherent ductility in single crystals of the ordered intermetallic compound NiAl

1992 ◽  
Vol 27 (10) ◽  
pp. 1259-1263 ◽  
Author(s):  
J.E. Hack ◽  
J.M. Brzeski ◽  
R. Darolia
1993 ◽  
Vol 170 (1-2) ◽  
pp. 11-18 ◽  
Author(s):  
J.M. Brzeski ◽  
J.E. Hack ◽  
R. Darolia ◽  
R.D. Field

Author(s):  
S. M. L. Sastry

Ti3Al is an ordered intermetallic compound having the DO19-type superlattice structure. The compound exhibits very limited ductility in tension below 700°C because of a pronounced planarity of slip and the absence of a sufficient number of independent slip systems. Significant differences in slip behavior in the compound as a result of differences in strain rate and mode of deformation are reported here.Figure 1 is a comparison of dislocation substructures in polycrystalline Ti3Al specimens deformed in tension, creep, and fatigue. Slip activity on both the basal and prism planes is observed for each mode of deformation. The dominant slip vector in unidirectional deformation is the a-type (b) = <1120>) (Fig. la). The dislocations are straight, occur for the most part in a screw orientation, and are arranged in planar bands. In contrast, the dislocation distribution in specimens crept at 700°C (Fig. lb) is characterized by a much reduced planarity of slip, a tangled dislocation arrangement instead of planar bands, and an increased incidence of nonbasal slip vectors.


1998 ◽  
Vol 62 (8) ◽  
pp. 761-765 ◽  
Author(s):  
Masahiko Kato ◽  
Hisaoki Sasano ◽  
Kazuhiro Honma ◽  
Toshiyuki Suzuki

Author(s):  
H. L. Fraser ◽  
M. H. Loretto ◽  
R. E. Smallman ◽  
R. J. Wasilewski

2002 ◽  
Vol 47 (9) ◽  
pp. 625-629 ◽  
Author(s):  
C.B. Jiang ◽  
H. Li ◽  
C.X. Huang ◽  
G.Y. Li ◽  
S.D. Wu ◽  
...  

2013 ◽  
Vol 32 (4) ◽  
pp. 359-365
Author(s):  
S.N. Liu ◽  
W. Su ◽  
W.Y. Lv ◽  
Z.F. Wei ◽  
C.L. Zeng

AbstractThe low ambient tensile ductility and inadequate high temperature strength and creep resistance have limited the applications of intermetallic compound NiAl as a structure material at high temperatures. A small addition of Ag could increase the strength of NiAl. In this study, hot corrosion behavior of NiAl and NiAl-Ag containing 1 and 5%Ag (in weight percent), respectively, in molten (Na,K)2SO4 at 1173 K has been examined by thermogravimetry and physical analysis techniques. The experimental results indicated that the corrosion rates of NiAl and NiAl-Ag tended to increase with exposure time, accompanied with the formation of nodules. Fast localized corrosion is the typical feature of the corrosion of both NiAl and NiAl-Ag. The addition of Ag to NiAl accelerated its corrosion, with a higher corrosion rate observed for the 5%Ag addition. The two-phase microstructure of NiAl-Ag alloys accelerated the formation of nodules in the regions close to Ag phases.


1990 ◽  
Vol 213 ◽  
Author(s):  
C. Steve Chang ◽  
D. P. Pope

AbstractHigh temperature compression tests were performed on Cr 3Si single crystalline and poly crystalline samples. Slip systems were determined to be of the {001}<010> type based on an analysis of slip traces and Laue spots. Single crystals show significant compressive ductility at temperatures above 0.7Tm. The implication of cube slip on the ductility of A15-type intermetallic compounds is discussed.


2011 ◽  
Vol 66 (6) ◽  
pp. 565-569 ◽  
Author(s):  
Stefan Linsinger ◽  
Rainer Pöttgen

The magnesium-rich intermetallic compound Sm3RuMg7 was synthesized by induction melting of the elements. Single crystals were grown by slow cooling of the polycrystalline sample. The structure was characterized by powder and single-crystal X-ray diffraction: ordered Ti6Sn5 type, P63/mmc, Z = 2, a = 1034.1(2), c = 611.3(1) pm, wR2 = 0.0216, 399 F2 values and 19 parameters. The ruthenium atoms have slightly distorted octahedral samarium coordination. These RuSm6/2 octahedra (Ru-Sm 279 pm) are condensed via common faces leading to chains in the c direction which are arranged in the form of a hexagonal rod packing. Between these rods the Mg2 atoms build chains of face-sharing trigonal prisms. Alternately these prisms are centered by Mg3 or capped by Mg1 atoms on the rectangular faces. Within the magnesium substructure the Mg-Mg distances range from 303 to 335 pm. The Mg3 site shows slight mixing with samarium, leading to the composition Sm3.16RuMg6.84 for the investigated crystal. The compounds RE3RuMg7 (RE = Gd, Tb) are isotypic.


Author(s):  
Rainer Niewa ◽  
Martin Kirchner ◽  
Hui Zhang ◽  
Walter Schnelle ◽  
Yuri Grin

AbstractSingle crystals of the new intermetallic compound La


Sign in / Sign up

Export Citation Format

Share Document