superlattice structure
Recently Published Documents


TOTAL DOCUMENTS

406
(FIVE YEARS 46)

H-INDEX

29
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8251
Author(s):  
Wen Huang ◽  
Xin Xiao ◽  
Parker Steichen ◽  
Sotirios A. Droulias ◽  
Martin Brischetto ◽  
...  

We investigate proximity effects on hydrogen absorption in ultra-thin vanadium layers through combing light transmission and electron scattering. We compare the thermodynamic properties of the vanadium layers, which are based on the superlattice structure of Cr/V (001) and Fe/V (001). We find an influence of the proximity effects on the finite-size scaling of the critical temperatures, which can be explained by a variation of dead layers in the vanadium. In addition to this, the proximity effects on hydrogen absorption are also verified from the changes of excess resistivity.


APL Materials ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 121114
Author(s):  
K. Khan ◽  
S. Diez ◽  
Kai Sun ◽  
C. Wurm ◽  
U. K. Mishra ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7317
Author(s):  
Pingping Wu ◽  
Yongfeng Liang

The lattice phase field model is developed to simulate microstructures of nanoscale materials. The grid spacing in simulation is rescaled and restricted to the lattice parameter of real materials. Two possible approaches are used to solve the phase field equations at the length scale of lattice parameter. Examples for lattice phase field modeling of complex nanostructures are presented to demonstrate the potential and capability of this model, including ferroelectric superlattice structure, ferromagnetic composites, and the grain growth process under stress. Advantages, disadvantages, and future directions with this phase field model are discussed briefly.


2021 ◽  
Vol 32 (3) ◽  
pp. 1-11
Author(s):  
Ezzah Azimah Alias ◽  
◽  
Muhamad Ikram Md Taib ◽  
Ahmad Shuhaimi Abu Bakar ◽  
Takashi Egawa ◽  
...  

A crack-free indium gallium nitride (InGaN) based light emitting diode (LED) grown on silicon (Si) substrate was successfully demonstrated by introducing aluminium nitride/gallium nitride (AlN/GaN) superlattice structure (SLS) in the growth of the LED. The luminescence and the crystalline properties of the LED were discussed. From photoluminescence (PL) surface mapping measurement, the emission wavelength of the LED (453 nm) was almost uniform across the LED epi-wafer area. Temperaturedependent PL revealed that the dominant emission peak of the LED was 2.77 eV at all temperatures. The emission peak was related to the quantum wells of the LED. Some additional peaks were also observed, in particular at lower temperatures. These peaks were associated to alloy fluctuations in the In0.11Ga0.89N/ In0.02Ga0.98N multiquantum wells (MQWs) of the LED. Furthermore, the dependence of PL intensity and PL decay time on temperature revealed the evidence related to indium and/or interface fluctuations of the quantum wells. From X-ray diffraction (XRD) ω-scan measurements, fringes of the AlN/GaN SLS were clear, indicating the SLS were grown with good interface abruptness. However, the fringes for the MQWs were less uniform, indicating another evidence of the alloy fluctuations in the MQWs. XRD-reciprocal surface mapping (RSM) measurement showed that all epitaxial layers of the LED were grown coherently, and the LED was fully under strain.


2021 ◽  
Author(s):  
Xiaoyi Peng ◽  
Pengfei Jiang ◽  
Yulou Ouyang ◽  
Shuang Lu ◽  
Weijun Ren ◽  
...  

Author(s):  
Shin-young Kang ◽  
Soo-min Jin ◽  
Ju-young Lee ◽  
Dae-seong Woo ◽  
Tae-hun Shim ◽  
...  

Corresponding to the principles of biological synapses, an essential prerequisite for hardware neural networks using electronics devices is continuous regulation of conductance. We implemented artificial synaptic characteristics in a (GeTe/Sb2Te3)16 iPCM with a superlattice structure under optimized identical pulse trains. Based on atomically controlling the Ge switch in the phase transition that appears in the GeTe/Sb2Te3 superlattice structure, multiple conductance states were implemented by applying the appropriate electrical pulses. Furthermore, we found that the bidirectional switching behavior of a (GeTe/Sb2Te3)16 iPCM can achieve a desired resistance level using the pulse width. Therefore, we also fabricated a Ge2Sb2Te5 PCM and designed a pulse scheme based on the phase transition mechanism to compare to the (GeTe/Sb2Te3)16 iPCM. We designed an identical pulse scheme that implements linear and symmetrical LTP and LTD based on the iPCM mechanism. As a result, the (GeTe/Sb2Te3)16 iPCM showed relatively excellent synaptic characteristics by implementing gradual conductance modulation, a nonlinearity value of 0.32, and LTP/LTD 40 conductance states using identical pulses trains. Our results demonstrate the general applicability of the artificial synaptic device for potential use in neuro-inspired computing and next generation non-volatile memory.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1508
Author(s):  
Max Müller ◽  
Dorothea Czempas ◽  
David Bailly ◽  
Gerhard Hirt

Iron–silicon alloys with up to 6.5 wt.% Si offer an improvement of soft magnetic properties in electrical steels compared to conventional electrical steel grades. However, steels with high Si contents are very brittle and cannot be produced by cold rolling. In addition to solid solution hardening, it is assumed that the B2- and DO3-superlattice structures are responsible for the poor cold workability. In this work, two cast strips with 6.0 wt.% Si were successfully produced by the twin roll strip casting process and cooled differently by secondary cooling. The aim of the different cooling strategies was to suppress the formation of the embrittling superlattice structures and thus enable further processing by cold rolling. A comprehensive material characterization allows for the understanding of the influence of casting parameters and cooling strategies on segregation, microstructure and superlattice structure. The results show that both cooling strategies are not sufficient to prevent the formation of B2- and DO3-structures. Although the dark field images show a condition which is far from equilibrium, the achieved condition is not sufficient to ensure cold processing of the material.


2021 ◽  
Vol 1041 ◽  
pp. 81-85
Author(s):  
Cheng Chun Zhao ◽  
Qiu Quan Guo ◽  
Jun Yang

A new nanofabrication method for construction of complex superlattice structure with versatile super-periodicity is developed using the moiré fringe of anodized aluminium oxide (AAO) membranes. Two ultrathin AAO membranes with long-range order holes are stacked to form 2D moiré nanopatterns. Both rotational symmetry and the periodicity of the holes are modified by the relative spatial displacement between the superimposing layers. Using the membranes as metal evaporation masks, a wide assortment of complex Al nanostructures are fabricated by varying the misorientation angle of the two ultrathin AAO membranes. Highly ordered Al nanoparticles with different sizes, shapes, orientations, and arrangements on substrates are achieved, which are expected to give abundant surface plasmon mode.


Sign in / Sign up

Export Citation Format

Share Document