Recovery of butyric acid, valeric acid, and caproic acid (BVC acids) from an aqueous waste stream using tributylphosphate (TBP) as an extractant

1994 ◽  
Vol 4 (4) ◽  
pp. 252-257 ◽  
Author(s):  
M.N. Ingale ◽  
V.V. Mahajani
2021 ◽  
Author(s):  
Yaxue He ◽  
Chiara Cassarini ◽  
Piet N. L. Lens

Abstract An anaerobic granular sludge was enriched to utilize H2/CO2 in a continuous gas-fed up-flow anaerobic sludge reactor by applying operating conditions expected to produce acetic acid, butyric acid and ethanol. Three stages of fermentation were found: Stage I with acetic acid accumulation with the highest concentration of 35 mM along with a pH decrease from initial 6 to 4.5. In Stage II, H2/CO2 was replaced by 100% H2 to induce solventogenesis, whereas butyric acid was produced with the highest concentration of 2.5 mM. At Stage III with 10 μM tungsten (W) addition, iso-valeric acid, valeric acid and caproic acid were produced at pH 4.5 -5.0. In the batch tests inoculated with the enriched sludge taken from the bioreactor (day 70), however, methane production occurred at pH 6. Exogenous 15 mM acetate addition enhanced both the H2 and CO2 consumption rate compared to exogenous 10, 30 and 45 mM acetate by the enriched sludge. Exogenous acetate failed to be converted to ethanol using H2 as electron donor by the enriched acetogens.


1952 ◽  
Vol 29 (1) ◽  
pp. 57-65 ◽  
Author(s):  
F. V. GRAY ◽  
A. F. PILGRIM ◽  
H. J. RODDA ◽  
R. A. WELLER

1. The mixture of volatile fatty acids in the rumen of the sheep has been shown to include formic acid, acetic acid, propionic acid, n-butyric acid, iso-butyric acid, n-valeric acid, another valeric acid isomer, caproic acid and an acid which is probably heptoic acid. The proportions in which they are present have been determined. 2. When acetic acid labelled with 14C in the carboxyl group was incorporated in the rumen fermentation in vitro, active carbon appeared later in all the higher acids. When labelled propionic acid was included in the fermentation, active carbon appeared in the valeric but not in the butyric acid. The results suggest a synthesis of the higher acids by condensation of the lower ones with 2-C compound in equilibrium with acetic acid. The extent of such syntheses and other possible modes of origin of the fatty acids are discussed.


Author(s):  
Corine Nzeteu

Contribution to the International Chain Elongation Conference 2020 | ICEC 2020. An abstract can be found in the right column.


2021 ◽  
Author(s):  
Lingxiong Chai ◽  
Qun Luo ◽  
Kedan Cai ◽  
Kaiyue Wang ◽  
Binbin Xu

Abstract Background: IgA nephropathy(IgAN)) is the common pathological type of glomerular diseases. The role of gut microbiota in mediating "gut-IgA nephropathy" has not received sufficient attention in the previous studies. The purpose of this study was to investigate the changes of fecal short-chain fatty acids(SCFAs), a metabolite of the intestinal microbiota, in patients with IgAN and its correlation with intestinal flora and clinical indicators, and to further investigate the role of the gut-renal axis in IgAN.Methods: There were 29 patients with IgAN and 29 normal control subjects recruited from January 2018 to May 2018. The fresh feces were collected. The fecal SCFAs were measured by gas chromatography/mass spectrometry and gut microbiota was analysed by16S rDNA sequences, followed by estimation of α- and β-diversity. Correlation analysis was performed using the spearman’s correlation test between SCFAs and gut microbiota. Results:The levels of acetic acid, propionic acid, butyric acid, isobutyric acid and caproic acid in the IgAN patients were significantly reduced compared with control group(P<0.05). Butyric acid(r=-0.336, P=0.010) and isobutyric acid(r=-0.298, P=0.022) were negatively correlated with urea acid; butyric acid(r=-0.316, P=0.016) was negatively correlated with urea nitrogen; caproic acid(r=-0.415,P=0.025) showed negative correlation with 24-h urine protein level.Exemplified by the results of α-diversity and β-diversity, the intestinal flora of IgAN patients was significantly different from that of the control group. Acetic acid was positively associated with c_Clostridia(r=0.357, P=0.008), o_Clostridiales(r=0.357, P=0.008) and g_Eubacterium_coprostanoligenes_group(r=0.283, P=0.036). Butyric acid was positively associated with g_Alistipes (r=0.278, P=0.040). The relative abundance of those were significantly decreased in IgAN group compared to control group.Conclusion: The levels of fecal SCFAs in the IgAN patients were reduced, and correlated with clinical parameters and gut microbiota, which may be involved in the pathogenesis of IgAN, and this finding may provide a new therapeutic approach.


2020 ◽  
Vol 614 ◽  
pp. 118558
Author(s):  
Xuesong Zhang ◽  
John Scott ◽  
Brajendra K. Sharma ◽  
Nandakishore Rajagopalan

PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0201073 ◽  
Author(s):  
Samantha Yuille ◽  
Nicole Reichardt ◽  
Suchita Panda ◽  
Hayley Dunbar ◽  
Imke E. Mulder

Sign in / Sign up

Export Citation Format

Share Document