CD45 protein tyrosine phosphatase: Determination of minimal peptide length for substrate recognition and synthesis of some tyrosine-based electrophiles as potential active-site directed irreversible inhibitors

1995 ◽  
Vol 5 (4) ◽  
pp. 353-356 ◽  
Author(s):  
Mark Bobko ◽  
Henry R. Wolfe ◽  
Ashis Saha ◽  
Roland E. Dolle ◽  
Diana K. Fisher ◽  
...  
2016 ◽  
Author(s):  
◽  
Kasi Viswanatharaju Ruddraraju

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Protein tyrosine phosphatase 1B (PTP1B) is a validated target for the treatment of type 2 diabetes and obesity. The discovery of selective inhibitors with drug-like properties has proven to be challenging because there are [about]80 PTP family members that share a similar and positively charged active site. To overcome these challenges, we have pursued two novel approaches for the covalent inactivation of PTP1B. Exo-affinity labeling agents exploit covalent reactions with amino acids outside the enzyme active site to gain both affinity and selectivity. We prepared several affinity labeling agents using a 12-step convergent synthesis. Enzyme assays revealed that some of these agents are capable of inactivating the enzyme by covalent modification. In another project, we prepared a low molecular weight mimic of the oxidized form of PTP1B that is generated in cells, during insulin signaling events. Seeking molecules capable of covalent capture of oxidized PTP1B, we treated this chemical model with several carbon nucleophiles, such as 1,3-diketones and sulfone-stabilized carbon anions. These carbon nucleophiles readily reacted with the model compound, under mild conditions to give stable adducts. Inactivation experiments revealed that 1,3-diketones are capable of inactivating the oxidized PTP1B at micromolar concentrations.


2004 ◽  
Vol 279 (50) ◽  
pp. 52150-52159 ◽  
Author(s):  
Zhonghui Huang ◽  
Bo Zhou ◽  
Zhong-Yin Zhang

The extracellular signal-regulated protein kinase 2 (ERK2) plays a central role in cellular proliferation and differentiation. Full activation of ERK2 requires dual phosphorylation of Thr183and Tyr185in the activation loop. Tyr185dephosphorylation by the hematopoietic protein-tyrosine phosphatase (HePTP) represents an important mechanism for down-regulating ERK2 activity. The bisphosphorylated ERK2 is a highly efficient substrate for HePTP with akcat/Kmof 2.6 × 106m–1s–1. In contrast, thekcatK/mvalues for the HePTP-catalyzed hydrolysis of Tyr(P) peptides are 3 orders of magnitude lower. To gain insight into the molecular basis for HePTP substrate specificity, we analyzed the effects of altering structural features unique to HePTP on the HePTP-catalyzed hydrolysis ofp-nitrophenyl phosphate, Tyr(P) peptides, and its physiological substrate ERK2. Our results suggest that substrate specificity is conferred upon HePTP by both negative and positive selections. To avoid nonspecific tyrosine dephosphorylation, HePTP employs Thr106in the substrate recognition loop as a key negative determinant to restrain its protein-tyrosine phosphatase activity. The extremely high efficiency and fidelity of ERK2 dephosphorylation by HePTP is achieved by a bipartite protein-protein interaction mechanism, in which docking interactions between the kinase interaction motif in HePTP and the common docking site in ERK2 promote the HePTP-catalyzed ERK2 dephosphorylation (∼20-fold increase inkcat/Km) by increasing the local substrate concentration, and second site interactions between the HePTP catalytic site and the ERK2 substrate-binding region enhance catalysis (∼20-fold increase inkcat/Km) by organizing the catalytic residues with respect to Tyr(P)185for optimal phosphoryl transfer.


2005 ◽  
Vol 187 (6) ◽  
pp. 2175-2181 ◽  
Author(s):  
Chaithanya Madhurantakam ◽  
Eerappa Rajakumara ◽  
Pooja Anjali Mazumdar ◽  
Baisakhee Saha ◽  
Devrani Mitra ◽  
...  

ABSTRACT The low-molecular-weight protein tyrosine phosphatase (LMWPTPase) belongs to a distinctive class of phosphotyrosine phosphatases widely distributed among prokaryotes and eukaryotes. We report here the crystal structure of LMWPTPase of microbial origin, the first of its kind from Mycobacterium tuberculosis. The structure was determined to be two crystal forms at 1.9- and 2.5-Å resolutions. These structural forms are compared with those of the LMWPTPases of eukaryotes. Though the overall structure resembles that of the eukaryotic LMWPTPases, there are significant changes around the active site and the protein tyrosine phosphatase (PTP) loop. The variable loop forming the wall of the crevice leading to the active site is conformationally unchanged from that of mammalian LMWPTPase; however, differences are observed in the residues involved, suggesting that they have a role in influencing different substrate specificities. The single amino acid substitution (Leu12Thr [underlined below]) in the consensus sequence of the PTP loop, C T GNICRS, has a major role in the stabilization of the PTP loop, unlike what occurs in mammalian LMWPTPases. A chloride ion and a glycerol molecule were modeled in the active site where the chloride ion interacts in a manner similar to that of phosphate with the main chain nitrogens of the PTP loop. This structural study, in addition to identifying specific mycobacterial features, may also form the basis for exploring the mechanism of the substrate specificities of bacterial LMWPTPases.


2014 ◽  
Vol 70 (2) ◽  
pp. 565-571 ◽  
Author(s):  
Peter W. Kenny ◽  
Janet Newman ◽  
Thomas S. Peat

The X-ray crystal structure of the complex of protein tyrosine phosphatase 1B with nitrate anion has been determined and modelled quantum-mechanically. Two protomers were present in the structure, one with the mechanistically important WPD loop closed and the other with this loop open. Nitrate was observed bound to each protomer, making close contacts with the S atom of the catalytic cysteine and a tyrosine residue from a crystallographically related protomer.


Sign in / Sign up

Export Citation Format

Share Document