PD 165929 — the first high affinity non-peptide neuromedin-B (NMB) receptor selective antagonist

1996 ◽  
Vol 6 (21) ◽  
pp. 2617-2622 ◽  
Author(s):  
J.M. Eden ◽  
M.D. Hall ◽  
M. Higginbottom ◽  
D.C. Horwell ◽  
W. Howson ◽  
...  
ChemInform ◽  
2010 ◽  
Vol 28 (14) ◽  
pp. no-no
Author(s):  
J. M. EDEN ◽  
M. D. HALL ◽  
M. HIGGINBOTTOM ◽  
D. C. HORWELL ◽  
W. HOWSON ◽  
...  

1993 ◽  
Vol 265 (6) ◽  
pp. C1579-C1587 ◽  
Author(s):  
F. Amiot ◽  
D. Leiber ◽  
S. Marc ◽  
S. Harbon

In the estrogen-treated rat myometrium, bombesin (Bn) and related agonists triggered contraction and the increased generation of inositol phosphates. The relative order of potencies was identical for both responses: Bn = gastrin releasing peptide (GRP) = litorin = neuromedin C >> neuromedin B. Two specific GRP-preferring receptor antagonists, namely [D-Phe6]Bn-(6-13) methyl ester and [Leu14,psi 13-14]Bn were inhibitory for both Bn-mediated tension and generation of inositol phosphates. [125I-Tyr4]Bn bound to myometrial membranes with high affinity (Kd = 104 pM) to a single class of sites in a saturable and reversible manner. The relative potencies for inhibiting binding were GRP = litorin = [Tyr4]Bn (Ki = 0.4 to 0.6 nM) >> neuromedin B (Ki = 10.3 nM). The high affinity displayed by [D-Phe6]Bn-(6-13) methyl ester (Ki = 2.8 nM) and [Leu14,psi 13-14]Bn (Ki = 35 nM) for competing for [Tyr4]Bn binding supported the involvement of a GRP-preferring Bn receptor. Guanine nucleotides decreased the binding of [125I-Tyr4]Bn and accelerated the rate of ligand dissociation, reflecting the coupling of receptors to guanine nucleotide regulatory proteins (G proteins). The results demonstrate that rat myometrium expresses functional GRP-preferring Bn receptors whose activation stimulates the phospholipase C pathway, pertussis toxin-insensitive event that contributes to Bn-mediated uterine contractions.


1998 ◽  
Vol 273 (26) ◽  
pp. 15927-15932 ◽  
Author(s):  
Eduardo Sainz ◽  
Mark Akeson ◽  
Samuel A. Mantey ◽  
Robert T. Jensen ◽  
James F. Battey

1994 ◽  
Vol 111 (1) ◽  
pp. 332-338 ◽  
Author(s):  
J. D. Gale ◽  
C. J. Grossman ◽  
J. W. F. Whitehead ◽  
A.W. Oxford ◽  
K. T. Bunce ◽  
...  

2005 ◽  
Vol 34 (3) ◽  
pp. 809-823 ◽  
Author(s):  
C Samuel Bradford ◽  
Eliza A Walthers ◽  
Brian T Searcy ◽  
Frank L Moore

A full-length cDNA that encodes a kappa (κ) opioid receptor has been isolated from the brain of a urodele amphibian, the rough-skinned newt Taricha granulosa. The deduced protein contains 385 amino acids and possesses features commonly attributed to G protein-coupled receptors, such as seven putative transmembrane domains. The newt κ receptor has 75% sequence identity to κ opioid receptors cloned from mammals, and 66% sequence identity to the κ opioid receptor reported for the zebrafish, with the greatest divergence in the extracellular N-terminus, the second and third extracellular loops and the intracellular C-terminus. Membranes isolated from COS-7 cells expressing the newt κ receptor possessed a single, high-affinity (Kd =1.5 nM) binding site for the κ-selective agonist U69593. In competition binding assays, the expressed newt κ receptor displayed high affinity for the κ-selective agonists GR89696, dynorphin A(1–13), U69593, U50488 and BRL52537, as well as the κ-selective antagonist nor-binaltorphimine and the non-selective antagonist naloxone. Rank order potencies and affinity constants were similar in competition binding studies that used either whole brain homogenates or membranes isolated from COS-7 cells expressing the newt κ receptor. The expressed receptor displayed essentially no affinity for the δ-selective agonist DPDPE ([d-penicillamine, d-penicillamine]enkephalin), but showed moderate affinity for the μ-selective agonist DAMGO ([d-Ala-MePhe, Gly-ol]enkephalin) and moderately high affinity for nociceptin (orphanin FQ), the endogenous ligand for the opioid receptor-like (ORL)1 receptor. These findings support the conclusions that a gene for the κ opioid receptor is expressed in amphibians and that the pharmacology of the newt κ receptor closely matches mammalian κ opioid receptors. However, the functional dichotomy between the classic opioid receptors (κ, δ, μ) and ORL1 appears less strict in amphibians than in mammals.


1989 ◽  
Vol 256 (4) ◽  
pp. G747-G758 ◽  
Author(s):  
T. Von Schrenck ◽  
P. Heinz-Erian ◽  
T. Moran ◽  
S. A. Mantey ◽  
J. D. Gardner ◽  
...  

To identify receptors for bombesin-related peptides in the rat esophagus, we measured binding of 125I-Bolton-Hunter neuromedin B (125I-BH-neuromedin B) and 125I-[Tyr4]bombesin to tissue sections from the rat esophagus and compared the results with those for rat pancreas. Esophagus bound both tracers, whereas pancreas bound only 125I-[Tyr4]bombesin. In each tissue binding was saturable, dependent on pH, on time, and on temperature, reversible, and specific. Autoradiography demonstrated binding of both tracers only to the muscularis mucosae of the esophagus and binding of 125I-[Tyr4]bombesin diffusely over pancreatic acini. In the esophagus, the relative potencies for inhibition of binding of both tracers were as follows: neuromedin B greater than bombesin greater than GRP = neuromedin C; similar relative potencies were found for causing contraction of muscle strips from whole esophagus and from the isolated muscularis mucosae. In pancreas tissue sections and dispersed acini, the relative potencies for inhibition of binding of 125I-[Tyr4]bombesin were as follows: bombesin greater than GRP = neuromedin C much greater than neuromedin B. Similar relative potencies were found for stimulation of enzyme secretion from dispersed pancreatic acini. Computer analysis in both tissues demonstrated only a single binding site. The present study demonstrates that rat esophagus muscle possesses specific receptors for bombesin-related peptides. Furthermore, this study shows that the esophageal bombesin receptors represent a previously unidentified class of bombesin receptors in that they have a higher affinity for neuromedin B than for bombesin. In contrast, the pancreatic bombesin receptors have, like all other bombesin receptors described to date, a high affinity for bombesin, but low affinity for neuromedin B.


Neurosurgery ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 890-898 ◽  
Author(s):  
Spencer P. Harland ◽  
Rhoda E. Kuc ◽  
John D. Pickard ◽  
Anthony P. Davenport

1987 ◽  
Vol 335 (5) ◽  
pp. 593-595 ◽  
Author(s):  
Ad F. Roffel ◽  
Willy G. in't Hout ◽  
Rokus A. de Zeeuw ◽  
Johan Zaagsma

1989 ◽  
Vol 67 (2-3) ◽  
pp. 152-162 ◽  
Author(s):  
Melvyn S. Soloff ◽  
Mats A. Fernström ◽  
Martha J. Fernström

The addition of oxytocin to minces of rat mammary gland preincubated with (3H)myo-inositol stimulated the formation of inositol phosphate (IP) in both lactating and regressed glands. Stimulation was about 4 times greater in regressed tissue, consistent with an oxytocin effect on myoepithelial cells, which are enriched relative to epithelial cells during regression. The stimulation of IP formation was agonist specific, as shown with several oxytocin analogs. Arginine vasopressin (AVP), however, was more than twice as potent as oxytocin in stimulating IP formation in regressed tissue. Both V1- and V2-selective AVP receptor antagonists inhibited the stimulation of IP formation by oxytocin. The V1-selective antagonist was about 10 times more inhibitory than the V2-selective antagonist. [3H]AVP was bound to plasma membranes from the mammary gland of the lactating rat with an apparent Kd of about 0.7 nM and Bmax of 54.6 fmol/mg protein. These values were comparable with those found for AVP receptors of kidney plasma membranes. Our results suggest that the stimulation of IP formation in rat mammary gland by oxytocin occurs through occupancy of AVP, and not oxytocin, receptor sites. A second aspect of these studies was to determine if a recently developed iodinated antagonist of oxytocin-induced uterine contractions could be used as a specific probe for oxytocin receptors in the rat mammary gland. Under steady state conditions, [125I]d(CH2)51[Tyr(Me)2,Thr4,Tyr-NH29]OVT was bound to a single class of independent binding sites in mammary gland plasma membrane from lactating rats with an apparent Kd of 65 pM and Bmax of 225 fmol/mg protein. Noniodinated antagonist had an affinity about 150 times less than the monoiodinated form. The affinity of binding sites for AVP was 10 times greater than the noniodinated antagonist and 2.4 times greater than oxytocin. In view of the presence of AVP receptors in mammary tissue, these findings suggested that the iodinated antagonist binds to AVP receptors. However, comparison of the binding of iodinated antagonist to plasma membranes from the lactating mammary gland with kidney medulla and liver, target sites for AVP, showed that binding was specific for the mammary gland and hence oxytocin receptors. The concentration of oxytocin receptors in mammary gland, as determined by [125I]d(CH2)51[Tyr(Me)2,Thr4,Tyr-NH29]OVT binding, was 4 times greater than the concentration of high-affinity AVP receptors, as determined by [3H]AVP binding. The high affinity, specificity, and specific activity of the iodinated antagonist should make it very useful in further studies to discriminate between oxytocin and AVP receptors, demonstrate oxytocin receptors with small amounts of samples, perform autoradiographic studies with short-term exposures, and to purify oxytocin receptors.Key words: oxytocin, vasopressin, receptor, mammary gland, antagonist.


Sign in / Sign up

Export Citation Format

Share Document