Cytoskeletal involvement in cotton fiber growth and development

Micron ◽  
1993 ◽  
Vol 24 (6) ◽  
pp. 643-660 ◽  
Author(s):  
Robert W. Seagull
Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1352
Author(s):  
Qian Chen ◽  
Fan Xu ◽  
Li Wang ◽  
Xiaodong Suo ◽  
Qiaoling Wang ◽  
...  

Cotton fiber is a single-celled seed trichrome that arises from the epidermis of the ovule’s outer integument. The fiber cell displays high polar expansion and thickens but not is disrupted by cell division. Therefore, it is an ideal model for studying the growth and development of plant cells. Sphingolipids are important components of membranes and are also active molecules in cells. However, the sphingolipid profile during fiber growth and the differences in sphingolipid metabolism at different developmental stages are still unclear. In this study, we detected that there were 6 classes and 95 molecular species of sphingolipids in cotton fibers by ultrahigh performance liquid chromatography-MS/MS (UHPLC-MS/MS). Among these, the phytoceramides (PhytoCer) contained the most molecular species, and the PhytoCer content was highest, while that of sphingosine-1-phosphate (S1P) was the lowest. The content of PhytoCer, phytoceramides with hydroxylated fatty acyls (PhytoCer-OHFA), phyto-glucosylceramides (Phyto-GluCer), and glycosyl-inositol-phospho-ceramides (GIPC) was higher than that of other classes in fiber cells. With the development of fiber cells, phytosphingosine-1-phosphate (t-S1P) and PhytoCer changed greatly. The sphingolipid molecular species Ceramide (Cer) d18:1/26:1, PhytoCer t18:1/26:0, PhytoCer t18:0/26:0, PhytoCer t18:1/h20:0, PhytoCer t18:1/h26:0, PhytoCer t18:0/h26:0, and GIPC t18:0/h16:0 were significantly enriched in 10-DPA fiber cells while Cer d18:1/20:0, Cer d18:1/22:0, and GIPC t18:0/h18:0 were significantly enriched in 20-DPA fiber cells, indicating that unsaturated PhytoCer containing hydroxylated and saturated very long chain fatty acids (VLCFA) play some role in fiber cell elongation. Consistent with the content analysis results, the related genes involved in long chain base (LCB) hydroxylation and unsaturation as well as VLCFA synthesis and hydroxylation were highly expressed in rapidly elongating fiber cells. Furthermore, the exogenous application of a potent inhibitor of serine palmitoyltransferase, myriocin, severely blocked fiber cell elongation, and the exogenous application of sphingosine antagonized the inhibition of myriocin for fiber elongation. Taking these points together, we concluded that sphingolipids play crucial roles in fiber cell elongation and SCW deposition. This provides a new perspective for further studies on the regulatory mechanism of the growth and development of cotton fiber cells.


2021 ◽  
Author(s):  
Jia-Shuo Yang ◽  
Jayakumar Bose ◽  
Sergey Shabala ◽  
Yong-Ling Ruan

AbstractCotton fibers are single-celled trichomes initiated from ovule epidermis prior to anthesis. Thereafter, the fibers undergo rapid elongation for 20 d before switching to intensive cell wall cellulose synthesis. The final length attained determines fiber yield and quality. As such, cotton fiber represents an excellent single cell model to study regulation of cell growth and differentiation, with significant agronomical implications. One major unresolved question is whether fiber elongation follows a diffusive or a tip growth pattern. We addressed this issue by using cell biology and electrophysiological approaches. Confocal imaging of Ca2+ binding dye, fluo-3 acetoxymethyl (Fluo-3), and in situ microelectrode ion flux measurement revealed that cytosolic Ca2+ was evenly distributed along the elongating fiber cells with Ca2+ and H+ fluxes oscillating from apical to basal regions of the elongating fibers. These findings demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern. Further analyses showed that the elongating fibers exhibited substantial net H+ efflux, indicating a strong activity of the plasma membrane H+-ATPase required for energy dependent solute uptake. Interestingly, the growing cotton fibers were responding to H2O2 treatment, know to promote fiber elongation, by a massive increase in the net Ca2+ and H+ efflux in both tip and basal zones, while non-growing cells lacked this ability. These observations suggest that desensitization of the cell and a loss of its ability to respond to H2O2 may be causally related to the termination of the cotton fiber elongation.One sentence summaryConfocal imaging of Ca2+ patterning and in situ microelectrode ion flux measurements demonstrate that, contrary to growing pollen tubes or root hairs, cotton fiber growth follows a diffusive, but not the tip growth, pattern.


Planta ◽  
1998 ◽  
Vol 205 (4) ◽  
pp. 561-566 ◽  
Author(s):  
Jack Van't Hof
Keyword(s):  

2017 ◽  
Vol 43 (5) ◽  
pp. 763
Author(s):  
Xiao-Meng ZHANG ◽  
Song-Jiang LIU ◽  
Wen-Fang GONG ◽  
Jun-Ling SUN ◽  
Bao-Yin PANG ◽  
...  

1974 ◽  
Vol 49 (2) ◽  
pp. 85-92 ◽  
Author(s):  
C. A. Beasley ◽  
E. H. Birnbaum ◽  
W. M. Dugger ◽  
I. P. Ting

1996 ◽  
Vol 12 (3) ◽  
pp. 313-316 ◽  
Author(s):  
R M Hoffman ◽  
D S Kronfeld ◽  
L A Lawrenz ◽  
W L Cooper ◽  
J J Dascanio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document