The radiation-induced solid phase graft copolymerization of NMA onto natural silk fabric

Author(s):  
Zhong Guangxiang ◽  
Zhuo Dunwen ◽  
Jin Xiaoyan
1996 ◽  
Vol 61 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Bhupendra N. Misra ◽  
G. S. Chauhan ◽  
Inderjeet Kaur

Radiation-induced graft copolymerization of vinyl acetate (VAC) and isopropenyl acetate (PAC) onto isotactic polypropylene (IPP) has been studied. The percentage of grafting was calculated for various reaction parameters, and the optimum conditions for attaining the maximum percentage of grafting were determined. Maximal achieved extents of grafting are 39% and 29% for VAC and PAC, respectively. The reactivity of the two monomers with respect to grafting is discussed.


2004 ◽  
Vol 15 (5) ◽  
pp. 270-274 ◽  
Author(s):  
M. Patri ◽  
Varsha R. Hande ◽  
Swati Phadnis ◽  
B. Somaiah ◽  
Suhasini Roychoudhury ◽  
...  

1990 ◽  
Vol 201 ◽  
Author(s):  
F. Namavar ◽  
E. Cortesi ◽  
N. M. Kalkhoran ◽  
J. M. Manke ◽  
B. L. Buchanan

AbstractSubstantial reduction of defect density in silicon-on-sapphire (SOS) material is required to broaden its range of applications to include CMOS and bipolar devices. In recent years, solid phase epitaxy and regrowth (SPEAR) and double solid phase epitaxy (DSPE) processes were applied to SOS to reduce the density of defects in the silicon. These methods result in improved carrier mobilities, but also in increased leakage current, even before irradiation. In a radiation environment, this material has a large increase in radiation induced back channel leakage current as compared to standard wafers. In other words, the radiation hardness quality of the SOS declines when the crystalline quality of the Si near the sapphire interface is improved.In this paper, we will demonstrate that Ge implantation, rather than Si implantation normally employed in DSPE and SPEAR processes, is an efficient and more effective way to reduce the density of defects near the surface silicon region without improving the Si/sapphire interface region. Ge implantation may be used to engineer defects in the Si/sapphire interface region to eliminate back channel leakage problems.


Sign in / Sign up

Export Citation Format

Share Document