ADAPTIVE OBSERVER IMPLEMENTATION USING A MICROCOMPUTER

Author(s):  
S.S.Y. Law ◽  
N.K. Sinha
Keyword(s):  
Author(s):  
Damiano Di Penta ◽  
Karim Bencherif ◽  
Qinghua Zhang ◽  
Michel Sorine

2021 ◽  
Vol 11 (2) ◽  
pp. 704
Author(s):  
Hosein Gholami-Khesht ◽  
Pooya Davari ◽  
Frede Blaabjerg

The three-phase inductor and capacitor filter (LC)-filtered voltage source inverter (VSI) is subjected to uncertain and time-variant parameters and disturbances, e.g., due to aging, thermal effects, and load changes. These uncertainties and disturbances have a considerable impact on the performance of a VSI’s control system. It can degrade system performance or even cause system instability. Therefore, considering the effects of all system uncertainties and disturbances in the control system design is necessary. In this respect and to tackle this issue, this paper proposes an adaptive model predictive control (MPC), which consists of three main parts: an MPC, an augmented state-space model, and an adaptive observer. The augmented state-space model considers all system uncertainties and disturbances and lumps them into two disturbance inputs. The proposed adaptive observer determines the lumped disturbance functions, enabling the control system to keep the nominal system performance under different load conditions and parameters uncertainty. Moreover, it provides load-current-sensorless operation of MPC, which reduces the size and cost, and simultaneously improves the system reliability. Finally, MPC selects the proper converter voltage vector that minimizes the tracking errors based on the augmented model and outputs of the adaptive observer. Simulations and experiments on a 5 kW VSI examine the performance of the proposed adaptive MPC under different load conditions and parameter uncertainties and compare them with the conventional MPC.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1254
Author(s):  
Gianluca Brando ◽  
Adolfo Dannier ◽  
Ivan Spina

This paper focuses on the performance analysis of a sensorless control for a Doubly Fed Induction Generator (DFIG) in grid-connected operation for turbine-based wind generation systems. With reference to a conventional stator flux based Field Oriented Control (FOC), a full-order adaptive observer is implemented and a criterion to calculate the observer gain matrix is provided. The observer provides the estimated stator flux and an estimation of the rotor position is also obtained through the measurements of stator and rotor phase currents. Due to parameter inaccuracy, the rotor position estimation is affected by an error. As a novelty of the discussed approach, the rotor position estimation error is considered as an additional machine parameter, and an error tracking procedure is envisioned in order to track the DFIG rotor position with better accuracy. In particular, an adaptive law based on the Lyapunov theory is implemented for the tracking of the rotor position estimation error, and a current injection strategy is developed in order to ensure the necessary tracking sensitivity around zero rotor voltages. The roughly evaluated rotor position can be corrected by means of the tracked rotor position estimation error, so that the corrected rotor position is sent to the FOC for the necessary rotating coordinate transformation. An extensive experimental analysis is carried out on an 11 kW, 4 poles, 400 V/50 Hz induction machine testifying the quality of the sensorless control.


2011 ◽  
Vol 60 (10) ◽  
pp. 877-883 ◽  
Author(s):  
D. Paesa ◽  
A. Baños ◽  
C. Sagues

2003 ◽  
Vol 145 (4) ◽  
pp. 78-87 ◽  
Author(s):  
Yuichi Tamura ◽  
Ikuya Sato ◽  
Hisao Kubota ◽  
Hisayoshi Ohta ◽  
Yoichi Hori

Sign in / Sign up

Export Citation Format

Share Document