INFLUENCE OF INACCURATE INPUT DATA ON THE OPTIMAL SHORT-TERM OPERATION OF POWER GENERATION SYSTEMS

Author(s):  
K.W. Edwin ◽  
R.-D. Machate
Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4804
Author(s):  
Rui Cao ◽  
Jianjian Shen ◽  
Chuntian Cheng ◽  
Jian Wang

The increasing peak-to-valley load difference in China pose a challenge to long-distance and large-capacity hydropower transmission via high-voltage direct current (HVDC) lines. Considering the peak shaving demands of load centers, an optimization model that maximizes the expected power generation revenue is proposed here for the long-term operation of an interprovincial hydropower plant. A simulation-based method was utilized to explore the relationships between long-term power generation and short-term peak shaving revenue in the model. This method generated representative daily load scenarios via cluster analysis and approximated the real-time electricity price of each load profile with the time-of-use price strategy. A mixed-integer linear programming model with HVDC transmission constraints was then established to obtain moving average (MA) price curves that bridged two time-coupled operations. The MA price curves were finally incorporated into the long-term optimization model to determine monthly generation schedules, and the inflow uncertainty was addressed by discretized inflow scenarios. The proposed model was evaluated based on the operation of the Xiluodu hydropower system in China during the drawdown season. The results revealed a trade-off between long-term energy production and short-term peak shaving revenue, and they demonstrated the revenue potential of interprovincial hydropower transmission while meeting peak shaving demands. A comparison with other long-term optimization methods demonstrated the effectiveness and reliability of the proposed model in maximizing power generation revenue.


2021 ◽  
Vol 13 (7) ◽  
pp. 3689
Author(s):  
Yueqiu Wu ◽  
Liping Wang ◽  
Yi Wang ◽  
Yanke Zhang ◽  
Jiajie Wu ◽  
...  

In the short-term operation of the power generation of cascade reservoirs, uncertainty factors such as inflow forecast errors could cause various types of risks. The inflow to a downstream reservoir is not only affected by inflow forecast errors from upstream reservoirs but also the forecast errors associated with inflow to the stream segment between the reservoirs, such as from a tributary. The inflow forecast errors of different forecast periods may also be correlated. To address this multivariate problem, the inflow forecast error variables were jointly fitted in this study using the Gaussian mixture model (GMM) and a t-Copula function based on the analysis of the error distribution characteristics in different forecast periods. Therefore, a stochastic model that coupled with the GMM and t-Copula to calculate inflow forecast errors in multiple forecast periods was established. Furthermore, according to the simulation results of the stochastic model and the predicted runoff series, a set of simulated runoff processes were obtained. Then they were combined with the existing power generation plan to carry out the risk analysis for short-term operation of the power generation in a cascade reservoir. The approach was evaluated using the Jinguan cascade hydropower system within the Yalong River basin as a case study. For this case study, the risk analysis for short-term operation of the power generation was analyzed based on stochastic simulation of the inflow forecast errors; the results show the feasibility and effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document