MICROCLONING AND CHARACTERIZATION OF THE EARLY ECDYSONE PUFF REGION 2B OF THE X CHROMOSOME OF DROSOPHILA MELANOGASTER

Ecdysone ◽  
1986 ◽  
pp. 249-254
Author(s):  
JOAN GALCERÁN ◽  
CONRADO GIMÉNEZ ◽  
JAN ERIK EDSTRÖM ◽  
MARTA IZQUIERDO
1986 ◽  
Vol 16 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Joan Galcerán ◽  
Conrado Giménez ◽  
Jan Erik Edström ◽  
Marta Izquierdo

Genetics ◽  
1972 ◽  
Vol 71 (1) ◽  
pp. 139-156
Author(s):  
B H Judd ◽  
M W Shen ◽  
T C Kaufman

ABSTRACT An average size chromomere of the polytene X chromosome of Drosophila melanogaster contains enough DNA in each haploid equivalent strand to code for 30 genes, each 1,000 nucleotides long. We have attempted to learn about the organization of chromosomes by asking how many functional units can be localized within a chromomere. This was done by 1) recovery of mutants representative of every cistron in the 3A2-3C2 region; 2) the characterization of the function of each mutant type and grouping by complementation tests; 3) the determination of the genetic and cytological position of each cistron by recombination and deletion mapping. The data clearly show one functional group per chromomere. It is postulated that a chromomere is one cistron within which much of the DNA is regulatory in function.


Genetics ◽  
1977 ◽  
Vol 87 (1) ◽  
pp. 95-104
Author(s):  
Theodore Homyk ◽  
David E Sheppard

ABSTRACT A flight test box was developed and used in the isolation and initial characterization of Drosophila melanogaster mutants defective in flight behavior. Forty-eight mutants were isolated from F1 progeny of ethyl methanesulfonate-treated males. Genetic mapping and complementation tests show that the mutations reside at thirty-four different sites on the X chromosome. Different mutants show different degrees of flight ability compared to controls. Forty-six mutations are recessive, while two appear to be semi-dominant with respect to flight behavior. In addition to flight defects, five mutants have visible defects, five behave as temperature-sensitive lethals and three exhibit abnormal electro-retinograms. Alleles of each of the previously known behavioral mutations, Hyperkinetic, ether à go-go and Shaker were found. Preliminary studies also suggest that the flight behavioral phenotype of mutations at seven sites is affected by the temperature at which the flies develop.


Chromosoma ◽  
1986 ◽  
Vol 93 (4) ◽  
pp. 341-346 ◽  
Author(s):  
S. S. Banga ◽  
B. T. Bloomquist ◽  
R. K. Brodberg ◽  
Q. N. Pye ◽  
D. C. Larrivee ◽  
...  

Genetics ◽  
1976 ◽  
Vol 84 (3) ◽  
pp. 485-506
Author(s):  
J B Boyd ◽  
M D Golino ◽  
T D Nguyen ◽  
M M Green

ABSTRACT Thirteen X-linked mutants have been isolated in Drosophila melanogaster which render male and homozygous female larvae sensitive to the mutagen methyl methanesulfonate. Their characterization and preliminary assignment to functional groups is described. Four of these mutants are alleles of mei-41 (Baker and Carpenter 1972). Like previously isolated alleles of this locus, these mutants reduce fertility and increase loss and nondisjunction of the X-chromosome in homozygous females. The remaining mutants have been tentatively assigned to six functional groups (two mutants to the mus(1)101 locus, two to mus(1)102, two to mus(1)103, and one each to mus(1)104, mus(1)105, and mus(1)106). Several of the complementation groups can be distinguished on the basis of nondisjunction and cross sensitivity to mutagens. Females homozygous for the mei-41, mus(1)101 and mus(1)102 mutants exhibit elevated levels of nondisjunction. Mutants belonging to complementation groups mei-41, mus(1)101, and mus(1)104 are sensitive to nitrogen mustard (HN2) in addition to their MMS sensitivity. Among these mutants there is currently a direct correlation between sensitivity to HN2, sensitivity to 2-acetylaminofluorene and a deficiency in post-replication repair (Boyd and Setlow 1976). Only the mei-41 mutants are hypersensitive to UV radiation, although several of the mutants exhibit sensitivity to Y-rays. Semidominance is observed in female larvae of the mei-41, mus(1)104, and mus(1)103 mutants after exposure to high concentrations of MMS. The properties of the mutants generally conform to a pattern which has been established for related mutants in yeast. Additional properties of these mutants are summarized in Table 9.


Genetics ◽  
1988 ◽  
Vol 118 (1) ◽  
pp. 109-120
Author(s):  
D F Eberl ◽  
A J Hilliker

Abstract This study attempted to assay the zygotic contribution of X chromosome genes to the genetic control of embryonic morphogenesis in Drosophila melanogaster. A systematic screen for X-linked genes which affect the morphology of the embryo was undertaken, employing the phenotype of whole mount embryos as the major screening criterion. Of 800 EMS-induced lethal mutations analyzed, only 14% were embryonic lethal, and of these only a minority affected embryonic morphogenesis. By recombination and complementation analyses, the mutations that affected embryonic morphogenesis were sequestered into 26 complementation groups. Fourteen of the loci correspond to genes previously identified in a large-scale screen in which fixed cuticles were examined, and 12 new loci have been identified. Most of the mutations which disrupt embryonic morphology had specific and uniform mutant phenotypes. Mutations were recovered which disrupt major morphogenetic events such as gastrulation, germ band retraction and head involution. No mutations were found which arrest the embryos prior to blastoderm formation. However, a novel class was found, one comprised of mutations which interfere with the development of internal structures but not cuticular structures. Nevertheless, saturation of the X chromosome for genes important for embryonic morphogenesis is probably incomplete.


1991 ◽  
Vol 58 (3) ◽  
pp. 211-223 ◽  
Author(s):  
Jan C. J. Eeken ◽  
Ron J. Romeyn ◽  
Anja W. M. De Jong ◽  
George Yannopoulos ◽  
Albert Pastink

SummaryTo study the effect of mutagenic/carcinogenic agents on P-element transposition, the P strains used should be denned, especially with respect to the number of intact and functional P elements present. In this investigation, the relation between the number of complete P elements present in dysgenic males and P-insertion mutagenesis was studied in several MR (P) strains. The main conclusions from this investigation are: (1) Complete P elements can be present in the genome without genetic activity (even in a ‘dysgenic’ cross). As a consequence, the number of complete P elements present in particular dysgenic flies, is not necessarily an indication of their dysgenic genetic activity. (2) The MR-h12/Cy strain carries two complete P elements, one on the X chromosome without and one on the MR chromosome with genetic activity (making this strain most suitable for studies on P-transposition mechanisms).


Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


Sign in / Sign up

Export Citation Format

Share Document