THE ANATOMY AND FUNCTION OF A SEGMENT OF THE X CHROMOSOME OF DROSOPHILA MELANOGASTER

Genetics ◽  
1972 ◽  
Vol 71 (1) ◽  
pp. 139-156
Author(s):  
B H Judd ◽  
M W Shen ◽  
T C Kaufman

ABSTRACT An average size chromomere of the polytene X chromosome of Drosophila melanogaster contains enough DNA in each haploid equivalent strand to code for 30 genes, each 1,000 nucleotides long. We have attempted to learn about the organization of chromosomes by asking how many functional units can be localized within a chromomere. This was done by 1) recovery of mutants representative of every cistron in the 3A2-3C2 region; 2) the characterization of the function of each mutant type and grouping by complementation tests; 3) the determination of the genetic and cytological position of each cistron by recombination and deletion mapping. The data clearly show one functional group per chromomere. It is postulated that a chromomere is one cistron within which much of the DNA is regulatory in function.

1986 ◽  
Vol 16 (1) ◽  
pp. 249-254 ◽  
Author(s):  
Joan Galcerán ◽  
Conrado Giménez ◽  
Jan Erik Edström ◽  
Marta Izquierdo

2005 ◽  
Vol 388 (1) ◽  
pp. 333-342 ◽  
Author(s):  
Jonathan P. DAY ◽  
Julian A. T. DOW ◽  
Miles D. HOUSLAY ◽  
Shireen-A. DAVIES

Cyclic nucleotide PDEs (phosphodiesterases) are important enzymes that regulate intracellular levels of cAMP and cGMP. In the present study, we identify and characterize novel PDEs in the genetic model, Drosophila melanogaster. The Drosophila genome encodes five novel PDE genes in addition to dunce. Predicted PDE sequences of Drosophila show highly conserved critical domains when compared with human PDEs. Thus PDE-encoding genes of D. melanogaster are CG14940-PDE1C, CG8279-PDE6β, CG5411-PDE8A, CG32648-PDE9 and CG10231-PDE11. Reverse transcriptase–PCRs of adult tissues reveal widespread expression of PDE genes. Drosophila Malpighian (renal) tubules express all the six PDEs: Drosophila PDE1, dunce (PDE4), PDE6, PDE8, PDE9 and PDE11. Antipeptide antibodies were raised against PDE1, PDE6, PDE9 and PDE11. Verification of antibody specificity by Western blotting of cloned and expressed PDE constructs allowed the immunoprecipitation studies of adult Drosophila lysates. Biochemical characterization of immunoprecipitated endogenous PDEs showed that PDE1 is a dual-specificity PDE (Michaelis constant Km for cGMP: 15.3±1 μM; Km cAMP: 20.5±1.5 μM), PDE6 is a cGMP-specific PDE (Km cGMP: 37±13 μM) and PDE11 is a dual-specificity PDE (Km cGMP: 6±2 μM; Km cAMP: 18.5±5.5 μM). Drosophila PDE1, PDE6 and PDE11 display sensitivity to vertebrate PDE inhibitors, zaprinast (IC50 was 71±39 μM for PDE1, 0.65±0.015 μM for PDE6 and 1.6±0.5 μM for PDE11) and sildenafil (IC50 was 1.3±0.9 μM for PDE1, 0.025±0.005 μM for PDE6 and 0.12±0.06 μM for PDE11). We provide the first characterization of a cGMP-specific PDE and two dual-specificity PDEs in Drosophila, and show a high degree of similarity in structure and function between human and Drosophila PDEs.


Ecdysone ◽  
1986 ◽  
pp. 249-254
Author(s):  
JOAN GALCERÁN ◽  
CONRADO GIMÉNEZ ◽  
JAN ERIK EDSTRÖM ◽  
MARTA IZQUIERDO

Genetics ◽  
1977 ◽  
Vol 87 (1) ◽  
pp. 95-104
Author(s):  
Theodore Homyk ◽  
David E Sheppard

ABSTRACT A flight test box was developed and used in the isolation and initial characterization of Drosophila melanogaster mutants defective in flight behavior. Forty-eight mutants were isolated from F1 progeny of ethyl methanesulfonate-treated males. Genetic mapping and complementation tests show that the mutations reside at thirty-four different sites on the X chromosome. Different mutants show different degrees of flight ability compared to controls. Forty-six mutations are recessive, while two appear to be semi-dominant with respect to flight behavior. In addition to flight defects, five mutants have visible defects, five behave as temperature-sensitive lethals and three exhibit abnormal electro-retinograms. Alleles of each of the previously known behavioral mutations, Hyperkinetic, ether à go-go and Shaker were found. Preliminary studies also suggest that the flight behavioral phenotype of mutations at seven sites is affected by the temperature at which the flies develop.


Genetics ◽  
2020 ◽  
Vol 215 (4) ◽  
pp. 1085-1105 ◽  
Author(s):  
Rayla Greenberg Temin

Segregation Distorter (SD) is a naturally occurring male meiotic drive system in Drosophila melanogaster, characterized by almost exclusive transmission of the SD chromosome owing to dysfunction of sperm receiving the SD+ homolog. Previous studies identified at least three closely linked loci on chromosome 2 required for distortion: Sd, the primary distorting gene; E(SD) (Enhancer of SD), which increases the strength of distortion; and Rsp (Responder), the apparent target of Sd. Strength of distortion is also influenced by linked upward modifiers including M(SD) (Modifier of SD) and St(SD) (Stabilizer of SD), and by various unlinked suppressors. Although Sd is known to encode a mutant RanGAP protein, none of the modifiers have been molecularly identified. This work focuses on the genetic and cytological characterization of a strong X-linked suppressor, Su(SD), capable of restoring Mendelian transmission in SD/SD+ males. Sd and its cohort of positive modifiers appear to act semiquantitatively in opposition to Su(SD) with distortion strength depending primarily on the total number of distorting elements rather than which particular elements are present. Su(SD) can also suppress male sterility observed in certain SD genotypes. To facilitate its eventual molecular identification, Su(SD) was localized by deletion mapping to polytene region 13C7-13E4. These studies highlight the polygenic nature of distortion and its dependence on a constellation of positive and negative modifiers, provide insight into the stability of Mendelian transmission in natural populations even when a drive system arises, and pave the way for molecular characterization of Su(SD) whose identity should reveal new information about the mechanism of distortion.


Chromosoma ◽  
1986 ◽  
Vol 93 (4) ◽  
pp. 341-346 ◽  
Author(s):  
S. S. Banga ◽  
B. T. Bloomquist ◽  
R. K. Brodberg ◽  
Q. N. Pye ◽  
D. C. Larrivee ◽  
...  

Genetics ◽  
1978 ◽  
Vol 88 (4) ◽  
pp. 723-742 ◽  
Author(s):  
Michael W Young ◽  
B H Judd

ABSTRACT From earlier work, there appears to be an underlying one-to-one correspondence of polytene chromosome bands and complementation groups within a sizeable, continuous X-chromosome segment, 3A1-3C7 (Judd, Shen and Kaufman 1972; Lefevre and Green 1972). However, most of the data supporting this one-to-one relation of bands and genes were gathered from mutants that upset vital functional units, thus leading to lethality. Among this series of mutants, only four loci, zeste, white, roughest and verticals, have no known lethal alleles. If phenotypic changes less drastic than lethality result from the loss of other chromosomal segments, they probably would not have been recognized in the earlier studies.—We report here some chromosomal sequences localized in 3A, 3B, and 3C whose loss effects no lethal change in the development of the animal. A portion of the 3A3-3A4 region can be disrupted in a nonlethal fashion, yet this sequence does not seem to be a part of either the zeste locus or l(1)zw1, which are known to be located in these bands. Two more complementation groups have been discovered that have no lethal alleles and map to 3B4-3B6; a third falls within 3B1-2. The loss of a sequence in 3C2-3 is tolerated without any genetically observable effect. Between 3C7 and the boundary of 3D there is at least one more sequence that behaves in this manner.—The discovery of these units, which are not allelic to any of the loci previously known, makes it clear that division 3B contains more genes (i.e., complementation groups) than polytene chromosome bands, while portions of 3A and 3C seem to have no functional significance. Accordingly many polytene chromosome bands may be composites of several complementing functional units. This investigation also indicates that there are chromosomal segments that are seemingly dispensible and thus function in a manner that is difficult or impossible to define with available methods.


Genetics ◽  
1976 ◽  
Vol 84 (3) ◽  
pp. 485-506
Author(s):  
J B Boyd ◽  
M D Golino ◽  
T D Nguyen ◽  
M M Green

ABSTRACT Thirteen X-linked mutants have been isolated in Drosophila melanogaster which render male and homozygous female larvae sensitive to the mutagen methyl methanesulfonate. Their characterization and preliminary assignment to functional groups is described. Four of these mutants are alleles of mei-41 (Baker and Carpenter 1972). Like previously isolated alleles of this locus, these mutants reduce fertility and increase loss and nondisjunction of the X-chromosome in homozygous females. The remaining mutants have been tentatively assigned to six functional groups (two mutants to the mus(1)101 locus, two to mus(1)102, two to mus(1)103, and one each to mus(1)104, mus(1)105, and mus(1)106). Several of the complementation groups can be distinguished on the basis of nondisjunction and cross sensitivity to mutagens. Females homozygous for the mei-41, mus(1)101 and mus(1)102 mutants exhibit elevated levels of nondisjunction. Mutants belonging to complementation groups mei-41, mus(1)101, and mus(1)104 are sensitive to nitrogen mustard (HN2) in addition to their MMS sensitivity. Among these mutants there is currently a direct correlation between sensitivity to HN2, sensitivity to 2-acetylaminofluorene and a deficiency in post-replication repair (Boyd and Setlow 1976). Only the mei-41 mutants are hypersensitive to UV radiation, although several of the mutants exhibit sensitivity to Y-rays. Semidominance is observed in female larvae of the mei-41, mus(1)104, and mus(1)103 mutants after exposure to high concentrations of MMS. The properties of the mutants generally conform to a pattern which has been established for related mutants in yeast. Additional properties of these mutants are summarized in Table 9.


Sign in / Sign up

Export Citation Format

Share Document