A CUMULATIVE FATIGUE DAMAGE CONSTITUTIVE EQUATION AND ITS APPLICATION TO LIFE PREDICTION

Author(s):  
WEI HUA TAI
Author(s):  
L Yang ◽  
A Fatemi

This study examines the fatigue damage accumulation process associated with a commonly produced forged vanadium-based microalloyed (MA) steel and its comparison with its quenched and tempered (Q&T) counterpart at the same hardness level. The advantage of MA steels compared to the traditional Q&T steels is the elimination of the costly quenching and tempering processes. Completely reversed strain-controlled two-level block loading tests were conducted on smooth axial specimens at room temperature. Under multi-level block cycling, the two steels displayed different characteristics, though they showed similar behaviour in constant amplitude fatigue. Therefore, a key to successful assessment of fatigue damage accumulation under variable amplitude service loading is selection of an appropriate cumulative fatigue life prediction model which reflects the material's damage characteristics. The effectiveness of several cumulative fatigue damage models and their life prediction capabilities are evaluated using the experimental data.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2250
Author(s):  
Mohammad Amjadi ◽  
Ali Fatemi

Short glass fiber-reinforced (SGFR) thermoplastics are used in many industries manufactured by injection molding which is the most common technique for polymeric parts production. Glass fibers are commonly used as the reinforced material with thermoplastics and injection molding. In this paper, a critical plane-based fatigue damage model is proposed for tension–tension or tension–compression fatigue life prediction of SGFR thermoplastics considering fiber orientation and mean stress effects. Temperature and frequency effects were also included by applying the proposed damage model into a general fatigue model. Model predictions are presented and discussed by comparing with the experimental data from the literature.


Sign in / Sign up

Export Citation Format

Share Document