NEW DIRECTIONS IN THE RESEARCH OF SOLVENT-POLYMERIC MEMBRANES

1989 ◽  
pp. 181-210 ◽  
Author(s):  
K. TÓTH ◽  
E. LINDNER ◽  
J. JENEY ◽  
E. GRÁF ◽  
M. HORVÁTH ◽  
...  
2019 ◽  
Vol 42 ◽  
Author(s):  
Penny Van Bergen ◽  
John Sutton

Abstract Sociocultural developmental psychology can drive new directions in gadgetry science. We use autobiographical memory, a compound capacity incorporating episodic memory, as a case study. Autobiographical memory emerges late in development, supported by interactions with parents. Intervention research highlights the causal influence of these interactions, whereas cross-cultural research demonstrates culturally determined diversity. Different patterns of inheritance are discussed.


Author(s):  
R.T. Chen ◽  
M.G. Jamieson ◽  
R. Callahan

“Row lamellar” structures have previously been observed when highly crystalline polymers are melt-extruded and recrystallized under high stress. With annealing to perfect the stacked lamellar superstructure and subsequent stretching in the machine (extrusion) direction, slit-like micropores form between the stacked lamellae. This process has been adopted to produce polymeric membranes on a commercial scale with controlled microporous structures. In order to produce the desired pore morphology, row lamellar structures must be established in the membrane precursors, i.e., as-extruded and annealed polymer films or hollow fibers. Due to the lack of pronounced surface topography, the lamellar structures have typically been investigated by replica-TEM, an indirect and time consuming procedure. Recently, with the availability of high resolution imaging techniques such as scanning tunneling microscopy (STM) and field emission scanning electron microscopy (FESEM), the microporous structures on the membrane surface as well as lamellar structures in the precursors can be directly examined.The materials investigated are Celgard® polyethylene (PE) flat sheet membranes and their film precursors, both as-extruded and annealed, made at different extrusion rates (E.R.).


Author(s):  
Lorna K. Mayo ◽  
Kenneth C. Moore ◽  
Mark A. Arnold

An implantable artificial endocrine pancreas consisting of a glucose sensor and a closed-loop insulin delivery system could potentially replace the need for glucose self-monitoring and regulation among insulin dependent diabetics. Achieving such a break through largely depends on the development of an appropriate, biocompatible membrane for the sensor. Biocompatibility is crucial since changes in the glucose sensors membrane resulting from attack by orinter action with living tissues can interfere with sensor reliability and accuracy. If such interactions can be understood, however, compensations can be made for their effects. Current polymer technology offers several possible membranes that meet the unique chemical dynamics required of a glucose sensor. Two of the most promising polymer membranes are polytetrafluoroethylene (PTFE) and silicone (Si). Low-voltage scanning electron microscopy, which is an excellent technique for characterizing a variety of polymeric and non-conducting materials, 27 was applied to the examination of experimental sensor membranes.


Addiction ◽  
1997 ◽  
Vol 92 (11) ◽  
pp. 1411-1422 ◽  
Author(s):  
Anthony P. Shakeshaft ◽  
Jenny A. Bowman ◽  
Rob W. Sanson-Fisher
Keyword(s):  

Polymer News ◽  
2004 ◽  
Vol 29 (8) ◽  
pp. 253-257
Author(s):  
Tejraj Aminabhavi ◽  
Udaya Toti ◽  
Mahaveer Kurkuri ◽  
Nadagouda Mallikarjuna ◽  
Lakshmi Shetti
Keyword(s):  

2009 ◽  
Vol 217 (3) ◽  
pp. 105-107 ◽  
Author(s):  
Christoph Stahl ◽  
Thorsten Meiser

Sign in / Sign up

Export Citation Format

Share Document