Risk-sensitive life cycle assessment of green composites for automotive applications

Author(s):  
U. Götze ◽  
P. Peças ◽  
H.M. Salman ◽  
J. Kaufmann ◽  
A. Schmidt
2014 ◽  
Author(s):  
Claire Boland ◽  
Robb DeKleine ◽  
Aditi Moorthy ◽  
Gregory Keoleian ◽  
Hyung Chul Kim ◽  
...  

Author(s):  
Siddharth Jain ◽  
Xiaolei Zhang

Botanically, green composites belong to an economically important seed plant family that includes maize, wheat, rice, and sorghum known as Saccharum offi cinarum. There are so many natural fibers available in the environment such as rice husk, hemp fibers, flax fibers, bamboo fibers, coconut fiber, coconut coir, grawia optiva and many others also. Life Cycle Assessment (LCA) is a process to estimate the environmental feature and potential impacts related to a product, by organizing a directory of pertinent inputs and outputs of a product system, assessing the potential environmental impacts related with the said inputs and outputs, explaining the results of the inventory analysis and impact evaluation phases in connection to the objectives of the study. Particularly Bagasse, an agricultural residue not only becomes a problem from the environmental point of view, but also affects the profitability of the sugarcane industries. This chapter discusses the properties, processing methods and various other aspects including economic and environmental aspects related to green composites.


Author(s):  
Siddharth Jain ◽  
Xiaolei Zhang

Botanically, green composites belong to an economically important seed plant family that includes maize, wheat, rice, and sorghum known as Saccharum offi cinarum. There are so many natural fibers available in the environment such as rice husk, hemp fibers, flax fibers, bamboo fibers, coconut fiber, coconut coir, grawia optiva and many others also. Life Cycle Assessment (LCA) is a process to estimate the environmental feature and potential impacts related to a product, by organizing a directory of pertinent inputs and outputs of a product system, assessing the potential environmental impacts related with the said inputs and outputs, explaining the results of the inventory analysis and impact evaluation phases in connection to the objectives of the study. Particularly Bagasse, an agricultural residue not only becomes a problem from the environmental point of view, but also affects the profitability of the sugarcane industries. This chapter discusses the properties, processing methods and various other aspects including economic and environmental aspects related to green composites.


2020 ◽  
Vol 25 (10) ◽  
pp. 2027-2049 ◽  
Author(s):  
Claudia Mair-Bauernfeind ◽  
Martina Zimek ◽  
Raphael Asada ◽  
Daniel Bauernfeind ◽  
Rupert J. Baumgartner ◽  
...  

Abstract Purpose The introduction of renewable materials into automotive applications is perceived as an innovative lightweight solution. Wood-based materials are advantageous in that they have potentially lower environmental impacts as compared with other materials such as steel. However, using wood per se does not automatically ensure more sustainability. Few prospective sustainability assessment methods or studies on the use of wood-based materials in automotive applications have been carried out, although these are needed to reduce unintended, negative sustainability effects and to support sustainable oriented research and innovation. Therefore, this study was conducted to assess the potential sustainability effects and consequences of introducing a wood-based component into an automotive application. Methods A combination of methods was used to analyze the potential sustainability effects when introducing wood into automotive applications. This prospective life cycle sustainability analysis solely relied on secondary data. The environmental impacts were analyzed using a simplified environmental life cycle assessment on the product level. A multi-regional input-output-based assessment was conducted to model the country-specific environmental and socioeconomic consequences. The potential shift in social risks and opportunities on a national scale was analyzed by conducting a generic social life cycle assessment. Various aspects of each approach differ, with each providing a specific perspective of the system under study. Results and discussion The results indicate that implementing wood into automotive application can have environmental, social, and economic benefits, according to most of the indicators analyzed. Mostly due to the product weight reduction due to the use of a wood-based component, the results show that environmental impacts decrease. Some possible consequences of using wood-based materials are increased value added and increasing the number of jobs in European countries. Similarly, the social risks and opportunities are shifted from countries all over the world to European countries, which perform better than developing countries according to several indicators. However, some indicators, such as migrant acceptance or local supplier quantity, perform better in the current situation. Conclusions The presented case study is particularly notable, because the results clearly indicate the advantages of using wood-based materials in automotive applications, although the application of such relatively holistic and complex approaches often may lead to rather indifferent pictures. Policy makers, researchers, and companies can apply this combination of methods that rely solely on generic data to obtain both feasible and informative results. These methods also allow users to link the product level assessment with a regional and social perspective and screen critical topics to support sustainability research and innovation.


Sign in / Sign up

Export Citation Format

Share Document