secondary aluminum
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 50)

H-INDEX

16
(FIVE YEARS 3)

JOM ◽  
2022 ◽  
Author(s):  
Sugam Shukla ◽  
Petteri Halli ◽  
Muhammad Kamran Khalid ◽  
Mari Lundström

AbstractWaste pharmaceutical blister packages (WPBs) are a source of solid waste, which are composed of plastics and aluminum, therefore acting as a potential source for secondary aluminum. The structure of WPBs makes the recycling of aluminum notably more complex than typical aluminum recycling. Currently, WBPs are disposed of as municipal solid waste; thus, aluminum is lost from the circulation during incineration. In this work, three types of WPBs were studied, each with two plastic layers and a metallic layer. Delamination of WPBs to separate aluminum and plastic(s) was investigated by using a solution of organic solvents. The effects of temperature (30–50°C), acetone to isopropanol ratio (0–100 vol.%) and different types of WPBs on delamination behavior were investigated. The results suggest that aluminum separation and recovery from WPBs is 100% at optimum conditions. Moreover, an overall indicative flowsheet for recycling and post-processing of segregated aluminum from the plastic is also suggested.


Author(s):  
Mykyta Vorobiov ◽  
Volodymyr Zgurskyi ◽  
Alexey Prokofiev ◽  
Ruslan Gubatyk

The high efficient design of the radiation-convective recuperator with secondary emitters have been proposed, in which due to the rational arrangement of heating surfaces, as well as due to the installation of secondary emitters in flues, an increase in heat perception is transmitted to the secondary heat carrier – preheating air. High efficiency of air preheating is provided by two-stage heating: 1st stage of heating – the internal air ring channel with bilateral heating which is washed by combustion products from the parties of the central cylindrical and peripheral ring channels of combustion products; 2nd stage of heating – the external air ring channel in which unilateral heating by products of combustion from the peripheral ring channel of products of combustion is organized. Inner and outer annular air ducts (tanks), interconnected by bypass pipes. To increase the efficiency of heat transfer in the considered recuperator in the central channel of combustion products is placed emitter, which consisting of intersecting radial plates, and in the annular channel of combustion products are placed auxiliary emitters, which made in the form of flat radial edges. These emitters provide an increasing in total heat flux to the walls of the channels of the recuperator. On the basis of the conducted theoretical researches, engineering calculations and CFD – modelling the characteristics of operation of the recuperator for its installation on the furnace of secondary smelting of aluminium are defined. The main advantages of the new design of recuperator are high thermo-hydraulic efficiency, compactness and low metal consumption, ease of installation on the furnace and no need for placement in separate chimneys. It is established that the recuperator provides air heating ta,ex ~ 400 °C at an acceptable aerodynamic drag (pressure drop) on the air track (∆pa ~ 1000 Pa). Appropriate design documentation has been developed for the manufacture of the recuperator, which is installed on a pilot furnace of secondary aluminium smelting by California Die Casting (USA).


Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 2
Author(s):  
Hongjun Ni ◽  
Weiyang Wu ◽  
Shuaishuai Lv ◽  
Xingxing Wang ◽  
Weijia Tang

The secondary aluminum ash is the black slag left after the primary aluminum ash is extracted from the metal aluminum. To address the environmental pollution and resource waste caused by the accumulation and landfill of aluminum ash, this study fabricated non-fired bricks by using secondary aluminum ash as the principal raw material, which was supplemented by cement, slaked lime, gypsum and engineering sand. The effects of mix proportions of various admixtures on the mechanical properties of non-fired bricks were investigated, and on this basis, the hydration mechanism was analyzed. The results showed that the mix proportions were 68.3% aluminum ash, 11.4% cement, 6.4% slaked lime, 4.2% gypsum and 9.7% engineering sand. The compressive strength of the fabricated bricks reached 22.19 MPa, and their quality indicators were in line with the MU20 requirements for Non-fired Rubbish Gangue Bricks. Evident hydration reaction occurred inside the non-fired bricks, with main products being calcium silicate hydrate (CSH), calcium aluminate hydrate (CAH) and ettringite (AFt). Besides, a dense structure was formed, which enhanced the brick strength.


Author(s):  
L. V. Tribushevskiy ◽  
B. M. Nemenenok ◽  
G. A. Rumiantseva ◽  
A. V. Arabey

The work contains the results of the analysis of technical literature and author’s research on the use of aluminium slags and products of their processing in metallurgical production. It has been shown that the bulk of reagents derived from secondary aluminum production wastes (APWs) are used with increased sodium and potassium chloride. This creates some inconvenience for out‑of‑furnace steel treatment due to the increased chloride content in the working area. It is proposed for steel processing to use APWs formed during flux‑free melting or dump aluminium slags. This allows to reduce the content of salt fluxes residues to 1.0–1.5 % and to improve working conditions at ladle furnaces when liquefying refining slags.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022071
Author(s):  
B Berdiyarov ◽  
Sh Khojiev ◽  
O Nuraliyev ◽  
B Mirsaotov ◽  
S Mirsaotov ◽  
...  

Abstract This article deals with removing oxygen at the final stage of steel smelting in arc steel-making furnaces. It is shown that the remaining oxygen during crystallization forms floccules and significantly reduces the quality of the finished metal. During the subsequent metal processing by pressure on these floccules, the metal is torn apart and makes it impossible to obtain a steel sheet. Deoxidation is performed with expensive ferroalloys, and their consumption must be minimized. To achieve economic efficiency, it has been proposed to use recycled aluminum slag as a relatively inexpensive local deoxidizer. To optimize the deoxidizer consumption, a rapid analysis method was developed using the electromotive force (EMF) determination to determine the oxygen activity in liquid steel. As a result of the study, the composition, structure, and technological parameters of deoxidized steel were determined. The use of this technology in production will make it possible to obtain high-quality steel and improve environmental protection through secondary aluminum waste.


2021 ◽  
Vol 13 (21) ◽  
pp. 12261
Author(s):  
Roberto Ercoli ◽  
Andrea Orlando ◽  
Daniele Borrini ◽  
Franco Tassi ◽  
Gabriele Bicocchi ◽  
...  

In the framework of the industry of secondary aluminum, the chemical neutralization of highly reactive materials that come from the pre-treatment screening processes of scraps (beverage cans and domestic appliances) was investigated through experiments in aqueous alkaline solutions. Metallic aluminum-rich by-products are classified, according to EU law, as dangerous waste, as they can potentially develop flammable gases capable of forming explosive mixtures with air. In this way they cannot be disposed of in landfills for non-hazardous wastes if chemical neutralization is not planned and performed beforehand. In this way, these experiments were mainly aimed at unraveling the oxidation rate and at quantifying the production of hydrogen-rich gases from the reactions of the metallic aluminum-rich by-products in a water-rich alkaline (liquid or vapor) environment. Reactions were carried out in a stainless-steel batch mini-reactor with metering and sampling valves, with the resulting gases analyzed by gas-chromatography (GC). The experimental setup was planned to avoid the following issues: (i) the corrosion of the reactor by the alkaline solution and (ii) the permeability of the system to hydrogen (i.e., possible leaks of H2), related to the fast kinetics and short duration of the reactions (which may hinder a pile-up-effect) between the solid by-products and the liquid. The procedure was defined by a controlled interaction process between metals and liquid, using NaOH to increase reaction rates. The experimental runs performed in the mini-reactor proved to be effective for eliminating the reactive metallic aluminum, reaching a maximum hydrogen production of 96% of the total gases produced in the experiments. The relations between gas generation (up to 55 bar of H2 in the experiments, which lasted for four days) and each specific parameter variation are discussed. All the obtained results can be transferred and applied to (i) the possible industrialization of the method for the chemical neutralization of these dangerous by-products, increasing sustainability and workplace safety, (ii) the use of the resulting hydrogen as a source of energy for the furnaces of the secondary aluminum industry itself, and (iii) new technological materials (e.g., “foamed geopolymers”), by using hydrogen as a foaming agent, coupled with aluminosilicate materials, during geopolymeric reactions.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5855
Author(s):  
Shaoyan Hu ◽  
Deyong Wang ◽  
Dong Hou ◽  
Wei Zhao ◽  
Xianglong Li ◽  
...  

Secondary aluminum dross is a byproduct of the electrolytic aluminum industry, whose main components are Al2O3, AlN and Na3AlF6. Secondary aluminum dross is a type of hazardous waste, with a tremendous yield every year. Realizing the harmless treatment or resource utilization of secondary aluminum dross has important economic and social benefits. In the present research, the process of preparing premelted calcium aluminate slag used for molten steel refining from secondary aluminum dross was studied in detail. Firstly, the chemical composition and phase component of secondary aluminum dross were analyzed systematically. Then, according to phase diagram analysis and melting point measurement, the appropriate mixing ratio of CaO and secondary aluminum dross and the appropriate calcination temperature were determined. On this basis, an experiment of premelted calcium aluminate slag preparation was carried out in a tubular resistance furnace. The phase component and micromorphology of the premelted slag were analyzed by XRD and SEM. The results show that the main component of the premelted calcium aluminate slag is 11CaO·7Al2O3·CaF2 phase with a low melting point. The original Na3AlF6 phase, which is the cause of leachable fluoride in secondary aluminum dross, disappears totally, and there is no water-soluble fluoride detected in the leaching toxicity detection. The research indicates that the process of preparing premelted calcium slag from secondary aluminum dross is feasible, which provides a helpful reference for the resource utilization of secondary aluminum dross.


2021 ◽  
Vol 172 ◽  
pp. 107134
Author(s):  
Qin Gao ◽  
Qiang Guo ◽  
Yongli Li ◽  
Baozeng Ren ◽  
Mingbo Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document