Mechanical Design of Process Equipment

2020 ◽  
pp. 929-1015
Author(s):  
Ray Sinnott ◽  
Gavin Towler
Author(s):  
Abraham Parra ◽  
Miguel Asuaje

This paper presents the detailed development of a multiphase model to predict the behavior of terrain-induced slugging, influenced by the viscous effects and hilly terrain. Currently, high viscosity heavy crude oil represents most of the available fossil resources. This crude flows inside long and expensive pipelines, usually over hilly terrain, causing the formation of slug flow. A very common flow pattern produces critical effects on pipelines in terms of modelling, mechanical stress, induced oscillations, fatigue, production losses, and other negative effects for the system. An accurate characterization of this pattern may give critical data for the mechanical design of piping systems and provide valuable information for the downstream process equipment selection. At present, most of the existing models to predict the behavior of slug flow neglect relevant parameters such as the effect of liquid viscosity and the effect of topographic terrain profile. The objective of this study is to present a mechanistic fluid model to determine the behavior of slug flow affected by the hilly terrain using viscous fluids. The model predicts the four stages of slug flow proposed by Schmidt et al. [1], and extends these stages to hilly terrain systems. The model is valid for a wide range of fluid viscosities and considers a range of pipe inclinations between 0° and 90°. Model validation with available literature and experimental data, shows a maximum deviation of 6%.


Author(s):  
Marc J.C. de Jong ◽  
P. Emile S.J. Asselbergs ◽  
Max T. Otten

A new step forward in Transmission Electron Microscopy has been made with the introduction of the CompuStage on the CM-series TEMs: CM120, CM200, CM200 FEG and CM300. This new goniometer has motorization on five axes (X, Y, Z, α, β), all under full computer control by a dedicated microprocessor that is in communication with the main CM processor. Positions on all five axes are read out directly - not via a system counting motor revolutions - thereby providing a high degree of accuracy. The CompuStage enters the octagonal block around the specimen through a single port, allowing the specimen stage to float freely in the vacuum between the objective-lens pole pieces, thereby improving vibration stability and freeing up one access port. Improvements in the mechanical design ensure higher stability with regard to vibration and drift. During stage movement the holder O-ring no longer slides, providing higher drift stability and positioning accuracy as well as better vacuum.


Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


Author(s):  
Luis Arturo Gómez Malagón ◽  
João Luiz Vilar Dias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document