Design of a Human Knee Reeducation Mechanism

Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.

Author(s):  
Abdullatif A. Alwasel ◽  
Eihab M. Abdel-Rahman ◽  
Carl T. Haas

As muscles fatigue, their passive and active mechanical properties change increasing the susceptibility of the human body to damage. The state-of-the-art technique for muscle fatigue detection, EMG signals, is cumbersome. This paper presents a technique to detect fatigue by tracking a kinematic parameter of the musculoskeletal system. The method uses the time-history of a single joint angle to detect fatigue in the lower limbs. A sensor is mounted to the knee joint to measure the knee flexion angle. Time delay embedding is used to track the orbit of knee joint motions in a reconstructed phase-space. The reconstructed phase-space allows us to obtain information about other body parts and joints of the lower limb in addition to the knee joint, since they are all connected in an open kinematic chain. Long-time drift in the orbit location and shape in phase-space is quantified and used as a measure of lower limb fatigue. The proposed technique presents a mobile, wireless, and cheap method to assess fatigue that can act as an early warning system for the lower limb.


2016 ◽  
Vol 51 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Zdenek Svoboda ◽  
Miroslav Janura ◽  
Patrik Kutilek ◽  
Eva Janurova

AbstractLots of athletic skills performed during practice or competition are initiated by the legs, where athletes either walk or run prior to executing specific skills. Kinematic chains are used to describe the relationships between body segments and joints during movement. The aim of this study was to determine the relationships between movements of lower limb segments and the pelvis in open and closed kinematic chains while walking. The experimental group consisted of 32 males (age 23.3 ± 2.5 years, body mass 78.1 ± 8.7 kg, body height 182 ± 6 cm). For 3D analysis, an optoelectronic system Vicon MX (7 cameras, frequency 200 Hz) was used. Positioning of the segments was determined by the PlugInGait Model. Each participant executed five trials at speeds ranging from 1.38 to 1.52 m·s-1. The relationships between angle variables of the lower limbs and the pelvis in selected gait cycle phases were evaluated using STATISTICA software (version 10.0) and the Spearman correlation. The highest numbers of moderate and large correlations were found at opposite toe off, heel rise and initial contact for the sagittal and transversal planes in comparison to the frontal plane. The closed kinematic chain had a stronger impact on determining the movement pattern. The instructions or interventions focusing on closed kinematic chain alternation are more effective for changes in a movement pattern. The preferred limb initiates kinematics in the direction of propulsion, while the non-preferred limb in internal and external rotation.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
M Borges ◽  
M Lemos Pires ◽  
R Pinto ◽  
G De Sa ◽  
I Ricardo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Exercise prescription is one of the main components of phase III Cardiac Rehabilitation (CR) programs due to its documented prognostic benefits. It has been well established that, when added to aerobic training, resistance training (RT) leads to greater improvements in peripheral muscle strength and muscle mass in patients with cardiovascular disease (CVD). With COVID-19, most centre-based CR programs had to be suspended and CR patients had to readjust their RT program to a home-based model where weight training was more difficult to perform. How COVID-19 Era impacted lean mass and muscle strength in trained CVD patients who were attending long-term CR programs has yet to be discussed. Purpose To assess upper and lower limb muscle strength and lean mass in CVD patients who had their centre-based CR program suspended due to COVID-19 and compare it with previous assessments. Methods 87 CVD patients (mean age 62.9 ± 9.1, 82.8% male), before COVID-19, were attending a phase III centre-based CR program 3x/week and were evaluated annually. After 7 months of suspension, 57.5% (n = 50) patients returned to the face-to-face CR program. Despite all constraints caused by COVID-19, body composition and muscle strength of 35 participants (mean age 64.7 ± 7.9, 88.6% male) were assessed. We compared this assessment with previous years and established three assessment time points: M1) one year before COVID-19 (2018); M2) last assessment before COVID-19 (2019); M3) the assessment 7 months after CR program suspension (last trimester of 2020). Upper limbs strength was measured using a JAMAR dynamometer, 30 second chair stand test (number of repetitions – reps) was used to measure lower limbs strength and dual energy x-ray absorptiometry was used to measure upper and lower limbs lean mass. Repeated measures ANOVA were used. Results Intention to treat analysis showed that upper and lower limbs lean mass did not change from M1 to M2 but decreased significantly from M2 to M3 (arms lean mass in M2: 5.68 ± 1.00kg vs M3: 5.52 ± 1.06kg, p = 0.004; legs lean mass in M2: 17.40 ± 2.46kg vs M3: 16.77 ± 2.61kg, p = 0.040). Lower limb strength also decreased significantly from M2 to M3 (M2: 23.31 ± 5.76 reps vs M3: 21.11 ± 5.31 reps, p = 0.014) after remaining stable in the year prior to COVID-19. Upper limb strength improved significantly from M1 to M2 (M1: 39.00 ± 8.64kg vs M2: 40.53 ± 8.77kg, p = 0.034) but did not change significantly from M2 to M3 (M2 vs M3: 41.29 ± 9.13kg, p = 0.517). Conclusion After CR centre-based suspension due to COVID-19, we observed a decrease in upper and lower limbs lean mass and lower limb strength in previously trained CVD patients. These results should emphasize the need to promote all efforts to maintain physical activity and RT through alternative effective home-based CR programs when face-to-face models are not available or possible to be implemented.


Author(s):  
Lucas Sousa Macedo ◽  
Renato Polese Rusig ◽  
Gustavo Bersani Silva ◽  
Alvaro Baik Cho ◽  
Teng Hsiang Wei ◽  
...  

BACKGROUND: Microsurgical flaps are widely used to treat complex traumatic wounds of upper and lower limbs. Few studies have evaluated whether the vascular changes in preoperative computed tomography angiography (CTA) influence the selection of recipient vessel and type of anastomosis and the microsurgical flaps outcomes including complications. OBJECTIVE: The aim of this study was to evaluate if preoperative CTA reduces the occurrence of major complications (revision of the anastomosis, partial or total flap failure, and amputation) of the flaps in upper and lower limb trauma, and to describe and analyze the vascular lesions of the group with CTA and its relationship with complications. METHODS: A retrospective cohort study was undertaken with all 121 consecutive patients submitted to microsurgical flaps for traumatic lower and upper limb, from 2014 to 2020. Patients were divided into two groups: patients with preoperative CTA (CTA+) and patients not submitted to CTA (CTA–). The presence of postoperative complications was assessed and, within CTA+, we also analyzed the number of patent arteries on CTA and described the arterial lesions. RESULTS: Of the 121 flaps evaluated (84 in the lower limb and 37 in the upper limb), 64 patients underwent preoperative CTA. In the CTA+ group, 56% of patients with free flaps for lower limb had complete occlusion of one artery. CTA+ patients had a higher rate of complications (p = 0.031), which may represent a selection bias as the most complex limb injuries and may have CTA indicated more frequently. The highest rate of complications was observed in chronic cases (p = 0.034). There was no statistically significant difference in complications in patients with preoperative vascular injury or the number of patent arteries. CONCLUSIONS: CTA should not be performed routinely, however, CTA may help in surgical planning, especially in complex cases of high-energy and chronic cases, since it provides information on the best recipient artery and the adequate level to perform the microanastomosis, outside the lesion area.


Author(s):  
Anssam Bassem Mohy ◽  
Aqeel Kareem Hatem ◽  
Hussein Ghani Kadoori ◽  
Farqad Bader Hamdan

Abstract Background Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS. Objectives The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability. Patients and methods Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated. Results TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not. Conclusion TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.


Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 683
Author(s):  
Maros Kalata ◽  
Tomas Maly ◽  
Mikulas Hank ◽  
Jakub Michalek ◽  
David Bujnovsky ◽  
...  

Background and objective: Type of physical activity may influence morphological and muscular asymmetries in the young population. However, less is known about the size of this effect when comparing various sports. The aim of this study was to identify the degree of bilateral asymmetry (BA) and the level of unilateral ratio (UR) between isokinetic strength of knee extensors (KE) and flexors (KF) among athletes of three different types of predominant locomotion in various sports (symmetric, asymmetric and hybrid). Material and methods: The analyzed group consisted of young elite athletes (n = 50). The maximum peak muscle torque of the KE and KF in both the dominant (DL) and non-dominant (NL) lower limb during concentric muscle contraction at an angular velocity of 60°·s−1 was measured with an isokinetic dynamometer. Results: Data analysis showed a significant effect of the main factor (the type of sport) on the level of monitored variables (p = 0.004). The type of sport revealed a significant difference in the bilateral ratio (p = 0.01). The group of symmetric and hybrid sports achieved lower values (p = 0.01) of BA in their lower limb muscles than those who played asymmetric sports. The hybrid sports group achieved higher UR values (p = 0.01) in both lower limbs. Conclusions: The results indicate that sports with predominantly symmetrical, asymmetrical, and hybrid types of locomotion affected the size of the BA, as well as the UR between KE and KF in both legs in young athletes. We recommend paying attention to regular KE and KF strength diagnostics in young athletes and optimizing individual compensatory exercises if a higher ratio of strength asymmetry is discovered.


2016 ◽  
Vol 26 (2) ◽  
Author(s):  
Deepesh Kumar ◽  
Sunny Verma ◽  
Sutapa Bhattacharya ◽  
Uttama Lahiri

Neurological disorders often manifest themselves in the form of movement deficit on the part of the patient. Conventional rehabilitation often used to address these deficits, though powerful are often monotonous in nature. Adequate audio-visual stimulation can prove to be motivational. In the research presented here we indicate the applicability of audio-visual stimulation to rehabilitation exercises to address at least some of the movement deficits for upper and lower limbs. Added to the audio-visual stimulation, we also use Functional Electrical Stimulation (FES). In our presented research we also show the applicability of FES in conjunction with audio-visual stimulation delivered through VR-based platform for grasping skills of patients with movement disorder.


2006 ◽  
Vol 21 (4) ◽  
pp. 168-179 ◽  
Author(s):  
A Cavezzi ◽  
N Labropoulos ◽  
H Partsch ◽  
S Ricci ◽  
A Caggiati ◽  
...  

Objectives: Duplex ultrasound investigation has become the reference standard in assessing the morphology and haemodynamics of the lower limb veins. The project described in this paper was an initiative of the Union Internationale de Phlébologie (UIP). The aim was to obtain a consensus of international experts on the methodology to be used for assessment of the anatomy of superficial and perforating veins in the lower limb by ultrasound imaging. Design: Consensus conference leading to a consensus document. Methods: The authors performed a systematic review of the published literature on duplex anatomy of the superficial and perforating veins of the lower limbs. Afterwards, they invited a group of experts from a wide range of countries to participate in this project. Electronic submissions from the authors and the experts (text and images) were made available to all participants via the UIP website. The authors prepared a draft document for discussion at the UIP Chapter meeting held in San Diego, USA, in August 2003. Following this meeting, a revised manuscript was circulated to all participants and further comments were received by the authors and included in subsequent versions of the manuscript. Eventually, all participants agreed on the final version of the paper. Results: The experts have made detailed recommendations concerning the methods to be used for duplex ultrasound examination as well as the interpretation of images and measurements obtained. This document provides a detailed methodology for complete ultrasound assessment of the anatomy of the superficial and perforating veins in the lower limbs. Conclusions: The authors and a large group of experts have agreed on a methodology for the investigation of the lower limbs venous system, by duplex ultrasonography, with specific reference to the anatomy of the main superficial veins and perforators of the lower limbs in healthy and varicose subjects.


Sign in / Sign up

Export Citation Format

Share Document