Parallel Algorithms and Fault-Tolerant Reconfigurable Architecture for Robot Kinematics and Dynamics Computations

Author(s):  
C.S.G. Lee ◽  
C.T. Lin
2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Hong Jun Li ◽  
Wei Jiang ◽  
Yu Yan ◽  
An Zhang ◽  
Gan Zuo

In response to the problems of high labor intensity, high risk, and poor reliability of artificial live working, a four-wheel-driven spacer bar replacement mobile operation robot has been designed and developed in this paper, and the corresponding kinematic and dynamics model have been established, based on the established double models, the kinematics and dynamics numerical analysis can be realized through INVENTOR and ADAMS, respectively, based on the established kinematics and dynamics models . The results show that the simulation value of the robot joint displacement, velocity, acceleration, and joint force can be able to meet the requirements of kinematic and dynamic constraints during the robot operation. The robot prototype can meet the requirement of dual-split robot working space and the operation joint force control, which not only extend the robot adaptability to the multisplit lines heterogeneous operation environment but also provide an important theoretical technical support for the exploit of the robot physical prototype. Through the robot kinematics and dynamics analysis, the robot mechanical structure parameters and electrical control parameters have been effectively optimized. The weight and cost of the robot have been reduced by 12% and 15% compared to the existed studies. Finally, the robot principle prototype mobile platform has been developed, and the correctness of robot kinematics and dynamics simulation analysis has been verified through the robot principle prototype mobile platform.


2013 ◽  
Vol 319 ◽  
pp. 385-392 ◽  
Author(s):  
Michał Ciszewski ◽  
Tomasz Buratowski ◽  
Mariusz Giergiel ◽  
Krzysztof Kurc ◽  
Piotr Małka

In this paper, the design of a tracked in-pipe inspection mobile robot with a flexible drive positioning system is presented. The robot would be able to operate in circular and rectangular pipes and ducts, oriented horizontally and vertically with cross section greater than 200 mm. The paper presents a complete design process of a virtual prototype, with usage of CAD/CAE software. Mathematical descriptions of the robot kinematics and dynamics that aim on development of a control system are presented. Laboratory tests of the utilized tracks are included. Performed tests proved conformity of the design with stated requirements, therefore a prototype will be manufactured basing on the project.


2005 ◽  
Vol 13 (04) ◽  
pp. 667-687 ◽  
Author(s):  
KILSEOK CHO ◽  
ALAN D. GEORGE ◽  
RAJ SUBRAMANIYAN

Continuous innovations in adaptive matched-field processing (MFP) algorithms have presented significant increases in computational complexity and resource requirements that make development and use of advanced parallel processing techniques imperative. In real-time sonar systems operating in severe underwater environments, there is a high likelihood of some part of systems exhibiting defective behavior, resulting in loss of critical network, processor, and sensor elements, and degradation in beam power pattern. Such real-time sonar systems require high reliability to overcome these challenging problems. In this paper, efficient fault-tolerant parallel algorithms based on coarse-grained domain decomposition methods are developed in order to meet real-time and reliability requirements on distributed array systems in the presence of processor and sensor element failures. The performance of the fault-tolerant parallel algorithms is experimentally analyzed in terms of beamforming performance, computation time, speedup, and parallel efficiency on a distributed testbed. The performance results demonstrate that these fault-tolerant parallel algorithms can provide real-time, scalable, lightweight, and fault-tolerant implementations for adaptive MFP algorithms on distributed array systems.


Robotica ◽  
2005 ◽  
Vol 23 (6) ◽  
pp. 701-708 ◽  
Author(s):  
Jung-Min Yang

This paper presents a strategy for generating fault-tolerant gaits of hexapod walking robots. A multi-legged robot is considered to be fault-tolerant with respect to a given failure if it is capable of continuing its walking after the occurrence of a failure, maintaining its static stability. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. The kinematic condition for the existence of fault-tolerant gaits is derived for straight-line walking of a hexapod robot on even terrain. An algorithm for generating fault-tolerant gaits is described and, especially, periodic gaits are presented for forward walking of a hexapod robot with a locked joint failure. The leg sequence and the stride length formula are analytically driven based on gait study and robot kinematics. A case study on post-failure walking of a hexapod robot with the wave gait is shown to demonstrate the applicability of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document