IN VITRO LYMPHOID CELL TRANSFORMATION BY ABELSON MURINE LEUKEMIA VIRUS

1976 ◽  
pp. 311-320 ◽  
Author(s):  
Naomi Rosenberg ◽  
David Baltimore
1976 ◽  
Vol 143 (6) ◽  
pp. 1453-1463 ◽  
Author(s):  
N Rosenberg ◽  
D Baltimore

A quantitative Abelson murine leukemia virus (A-MuLV) lymphoid cell transformation assay has been developed using a semisolid agarose culture system. Under these conditions lymphoid cell transformation was shown to vary linearly with the dose of A-MuLV used. The susceptibility of bone marrow cells from different strains of mice to A-MuLV-induced transformation can be estimated using the agarose assay. Strains with bone marrow cells of high, medium, and low susceptibility to A-MuLV can be identified. The assay has been used to study the susceptibility of cells from lymphoid organs of fetal and adult mice to A-MuLV. Cell suspensions from fetal liver, adult bone marrow, and adult spleen are susceptible to A-MuLV, while thymocytes are resistant to A-MuLV-induced transformation. Bovine serum albumin gradient fractionation of bone marrow cells before infection with A-MuLV demonstrates that the majority of A-MuLV-sensitive cells are recovered in a broad band partially overlapping the majority of the nucleated cells. The agarose assay system allows study of A-MuLV-lymphoid cell interaction at the level of single cell-single virus particle interaction.


1989 ◽  
Vol 9 (1) ◽  
pp. 278-287
Author(s):  
R W Rees-Jones ◽  
M Goldfarb ◽  
S P Goff

Abelson murine leukemia virus (A-MuLV) encodes a single protein product, a tyrosine-specific protein kinase, whose activity is necessary for cell transformation by this retrovirus. Using a defined medium culture system, we demonstrate that transformation of NIH 3T3 fibroblasts by A-MuLV abrogates their normal requirement for platelet-derived growth factor (PDGF) for cell growth. Analysis of constructed insertional mutant viruses revealed an absolute correlation between A-MuLV-encoded tyrosine kinase activity and PDGF-independent fibroblast growth. Sequences of the provirus not required for kinase activity appeared unnecessary for abrogating the fibroblast requirement for PDGF. Conversely, sequences required for kinase activity appeared necessary, suggesting that induction of PDGF-independent fibroblast growth, like cell transformation, is a function of this tyrosine kinase. Fibroblasts transformed by a partially transformation-defective mutant demonstrated incomplete morphological transformation but were still independent of PDGF for growth. Thus, the processes of full morphological transformation and growth factor independence can be partially dissociated.


1982 ◽  
Vol 2 (4) ◽  
pp. 386-400
Author(s):  
F W Alt ◽  
N Rosenberg ◽  
V Enea ◽  
E Siden ◽  
D Baltimore

Lymphoid cells transformed by Abelson murine leukemia virus (A-MuLV) contain three classes of RNA transcripts from immunoglobulin mu genes. P mu-mRNAs (productive) correspond to the normal 2.7-kilobase (kb) membrane (mu m) and 2.4-kb secreted (mu s) mu mRNA species both in size and coding capacity and occur at approximately equal abundance in most mu-positive (pre-B-like) A-MuLV transformants. A mu-mRNAs (aberrant) generally fall into one of two categories--aberrantly small 2.3-kb mu m and 2.0-kb mu s mRNAs which encode aberrantly small mu polypeptide chains, or normal-sized, V H-containing mu RNAs which do not encode immunologically identifiable mu polypeptide chains. In one case, the latter type of A mu-mRNA was demonstrated to result from an in-phase termination codon in the D segment of the mu mRNA. Also, most, if not all, A-MuLV transformants express members of a 3.0 to 1.9-kb set of C mu-containing, but V H-negative S mu-RNAs (for sterile), the expression of which may occur simultaneously with but independently of P mu-mRNAs or A mu-mRNAs. The S mu-RNA sequences do not encode immunologically identifiable mu chains and can be produced by cells with unrearranged heavy-chain alleles, such as T-lymphocytes, although the structure of the S mu-RNAs from T-lymphoid cells appears to be different from that of B-lymphoid cell S mu-RNAs. Certain A-MuLV transformants also express gamma-RNA sequences that are probably analogous to the three different forms of mu RNA. These data support the concept that heavy-chain allelic exclusion, like that of light chains, is not mediated by control at the DNA or RNA levels but is probably a consequence of feedback control from cytoplasmic mu chains.


1982 ◽  
Vol 2 (4) ◽  
pp. 386-400 ◽  
Author(s):  
F W Alt ◽  
N Rosenberg ◽  
V Enea ◽  
E Siden ◽  
D Baltimore

Lymphoid cells transformed by Abelson murine leukemia virus (A-MuLV) contain three classes of RNA transcripts from immunoglobulin mu genes. P mu-mRNAs (productive) correspond to the normal 2.7-kilobase (kb) membrane (mu m) and 2.4-kb secreted (mu s) mu mRNA species both in size and coding capacity and occur at approximately equal abundance in most mu-positive (pre-B-like) A-MuLV transformants. A mu-mRNAs (aberrant) generally fall into one of two categories--aberrantly small 2.3-kb mu m and 2.0-kb mu s mRNAs which encode aberrantly small mu polypeptide chains, or normal-sized, V H-containing mu RNAs which do not encode immunologically identifiable mu polypeptide chains. In one case, the latter type of A mu-mRNA was demonstrated to result from an in-phase termination codon in the D segment of the mu mRNA. Also, most, if not all, A-MuLV transformants express members of a 3.0 to 1.9-kb set of C mu-containing, but V H-negative S mu-RNAs (for sterile), the expression of which may occur simultaneously with but independently of P mu-mRNAs or A mu-mRNAs. The S mu-RNA sequences do not encode immunologically identifiable mu chains and can be produced by cells with unrearranged heavy-chain alleles, such as T-lymphocytes, although the structure of the S mu-RNAs from T-lymphoid cells appears to be different from that of B-lymphoid cell S mu-RNAs. Certain A-MuLV transformants also express gamma-RNA sequences that are probably analogous to the three different forms of mu RNA. These data support the concept that heavy-chain allelic exclusion, like that of light chains, is not mediated by control at the DNA or RNA levels but is probably a consequence of feedback control from cytoplasmic mu chains.


2008 ◽  
Vol 82 (17) ◽  
pp. 8383-8391 ◽  
Author(s):  
Rebekah Stackpole Zimmerman ◽  
Naomi Rosenberg

ABSTRACT Transformation by Abelson murine leukemia virus (Ab-MLV) is a multistep process in which growth-stimulatory signals from the v-Abl oncoprotein and growth-suppressive signals from the p19Arf-p53 tumor suppressor pathway oppose each other and influence the outcome of infection. The process involves a proliferative phase during which highly viable primary transformants expand, followed by a period of marked apoptosis (called “crisis”) that is dependent on the presence of p19Arf and p53; rare cells that survive this phase emerge as fully transformed and malignant. To understand the way in which v-Abl expression affects p19Arf expression, we examined changes in expression of Arf during all stages of Ab-MLV transformation process. As is consistent with the ability of v-Abl to stimulate Myc, a transcription factor known to induce p19Arf, Myc and Arf are induced soon after infection and p19Arf is expressed. At these early time points, the infected cells remain highly viable. The onset of crisis is marked by an increase in p19Arf expression and a change in localization of the protein from the nucleoplasm to the nucleolus. These data together suggest that the localization and expression levels of p19Arf modulate the effects of the protein during oncogenesis and reveal that the p19Arf-mediated response is subject to multiple layers of regulation that influence its function during Ab-MLV-mediated transformation.


Sign in / Sign up

Export Citation Format

Share Document