Bidirectional Pathways between the Brain and Immune System: A Role for Thymosin Peptides

1986 ◽  
pp. 611-618
Author(s):  
Nicholas R.S. Hall ◽  
John Farah ◽  
Bryan L. Spangelo ◽  
Allan L. Goldstein
Keyword(s):  
System A ◽  
2021 ◽  
Vol 75 (3) ◽  
Author(s):  
Peter Kramer ◽  
Paola Bressan

AbstractWe social animals must balance the need to avoid infections with the need to interact with conspecifics. To that end we have evolved, alongside our physiological immune system, a suite of behaviors devised to deal with potentially contagious individuals. Focusing mostly on humans, the current review describes the design and biological innards of this behavioral immune system, laying out how infection threat shapes sociality and sociality shapes infection threat. The paper shows how the danger of contagion is detected and posted to the brain; how it affects individuals’ mate choice and sex life; why it strengthens ties within groups but severs those between them, leading to hostility toward anyone who looks, smells, or behaves unusually; and how it permeates the foundation of our moral and political views. This system was already in place when agriculture and animal domestication set off a massive increase in our population density, personal connections, and interaction with other species, amplifying enormously the spread of disease. Alas, pandemics such as COVID-19 not only are a disaster for public health, but, by rousing millions of behavioral immune systems, could prove a threat to harmonious cohabitation too.


2021 ◽  
Author(s):  
Peter Kramer ◽  
Paola Bressan

We social animals must balance the need to avoid infections with the need to interact with conspecifics. To that end we have evolved, alongside our physiological immune system, a suite of behaviors devised to deal with potentially contagious individuals. Focusing mostly on humans, the current review describes the design and biological innards of this behavioral immune system, laying out how infection threat shapes sociality and sociality shapes infection threat. The paper shows how the danger of contagion is detected and posted to the brain; how it affects individuals’ mate choice and sex life; why it strengthens ties within groups but severs those between them, leading to hostility toward anyone who looks, smells, or behaves unusually; and how it permeates the foundation of our moral and political views. This system was already in place when agriculture and animal domestication set off a massive increase in our population density, personal connections, and interaction with other species, amplifying enormously the spread of disease. Alas, pandemics such as COVID-19 not only are a disaster for public health, but, by rousing millions of behavioral immune systems, could prove a threat to harmonious cohabitation too.


2020 ◽  
Vol 86 (11) ◽  
Author(s):  
Fiorenza Ferrari ◽  
Federico Visconti ◽  
Mara De Amici ◽  
Angelo Guglielmi ◽  
Costanza N. Colombo ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


Sign in / Sign up

Export Citation Format

Share Document