Mass Rearing of the Stem-Galling Wasp Tetramesa romana, a Biological Control Agent of the Invasive Weed Arundo donax

Author(s):  
Patrick J. Moran ◽  
John A. Goolsby ◽  
Alexis E. Racelis ◽  
Allen C. Cohen ◽  
Matthew A. Ciomperlik ◽  
...  
Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 588
Author(s):  
Charles A. Braman ◽  
Adam M. Lambert ◽  
A. Zeynep Özsoy ◽  
Ellen N. Hollstien ◽  
Kirsten A. Sheehy ◽  
...  

Arundo donax (giant reed) is invasive in Mediterranean, sub-, and tropical riparian systems worldwide. The armored scale Rhizaspidiotus donacis is approved for biocontrol in North America, but an adventive population was recently discovered in southern California. We documented this population’s distribution, phylogeny, phenology, potential host spillover to Phragmites spp., and potential for parasitism by a common biocontrol parasitoid of citrus scale. The adventive scale was found within a single watershed and is genetically closest to Iberian scale genotypes. Rhizaspidiotus donacis developed on Phragmites haplotypes but at much lower densities than Arundo. The adventive population is univoltine, producing crawlers from March-June. Aphytis melinus parasitoids exhibited sustained interest in R. donacis during choice and no-choice trials and oviposition resulted in a small second generation. Rhizaspidiotus donacis appears limited in distribution by its univoltinism and sessile adult females. This presents challenges for broad biocontrol implementation but allows for targeted application. The genetic differentiation between imported biocontrol samples and adventive populations presents an opportunity for exploring benefits of hybrids and/or alternative genotypes where establishment has been difficult. While unlikely to occur in situ, spillover to vulnerable endemic Phragmites or deleterious parasitoid effects on scale biocontrol agents warrants consideration when planning use of R. donacis.


Mycoscience ◽  
2009 ◽  
Vol 50 (3) ◽  
pp. 179-189 ◽  
Author(s):  
Daisuke Kurose ◽  
Naruto Furuya ◽  
Kenichi Tsuchiya ◽  
Harry C. Evans ◽  
Djamila H. Djeddour ◽  
...  

2019 ◽  
Vol 20 (4) ◽  
pp. 1006-1011 ◽  
Author(s):  
AKHMAD RIZALI ◽  
MOCHAMMAD SYAMSUL HADI ◽  
PUDJIANTO PUDJIANTO ◽  
DAMAYANTI BUCHORI

Abstract. Authors. 2019. A new trophic interaction between invasive weed, its biological control agent, and local insects: a case study of Chromolaena odorata. Biodiversitas 20: 1006-1011. Invasive species have been known to cause biotic homogenization. The presence of Chromolaena odorata, an alien invasive weed, in agricultural habitat has outcompeted many crop plants. The presence of alien invasive weed creates a new trophic interaction especially with local herbivores as well as other associate insects. This study was aimed to investigate a new trophic interaction that has been established between C. odorata, its introduced biological control agent, and local insects. The research was conducted in various land-use types in both of Arjuno and Bromo mountain landscape. In each landscape, we surveyed the population density of C. odorata and its biological control agent (a gall fly, Cecidochares connexa) as well as observed the diversity and abundance of other insects associated with C. odorata. Samples were taken along the transect lines at various altitudinal gradients, from 400 to 1100 m asl. In total, 124 species of insects were found associated with C. odorata which include herbivores, parasitoids, and predators. The difference of land-use types affected the population density of C. odorata but not its herbivores (i.e. C. connexa and aphids). A new association was found between the introduced insect, C. connexa and local parasitoids. The field survey also discovered new associations between the invasive weed with local herbivores such as aphids that are found with high abundance. The aphids were found to have a symbiosis interaction with ants such as Anoplolepis gracilipes (invasive species) and Dolichoderus thoracicus. In conclusion, the ecological consequence of the presence of invasive weed species is the shaping of a new trophic interaction with local insects, even with other invasive ant species. This interaction arguably is part of an ecological process that formed an equilibrium interaction which may cause either a negative or positive impact on C. odorata.


2015 ◽  
Vol 106 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Héctor Martínez-García ◽  
Luis R Román-Fernández ◽  
María G Sáenz-Romo ◽  
Ignacio Pérez-Moreno ◽  
Vicente S Marco-Mancebón

AbstractFor optimal application of Nesidiocoris tenuis as a biological control agent, adequate field management and programmed mass rearing are essential. Mathematical models are useful tools for predicting the temperature-dependent developmental rate of the predator. In this study, the linear model and nonlinear models Logan type III, Lactin and Brière were estimated at constant temperatures and validated at alternating temperatures and under field conditions. N. tenuis achieved complete development from egg to adult at constant temperatures between 15 and 35°C with high survivorship (>80%) in the range 18–32°C. The total developmental time decreased from a maximum at 15°C (76.74 d) to a minimum at 33°C (12.67 d) and after that, increased to 35°C (13.98 d). Linear and nonlinear developmental models all had high accuracy (Ra2 >0.86). The maximum developmental rate was obtained between 31.9°C (Logan type III and Brière model for N1) and 35.6°C (for the egg stage in the Brière model). Optimal survival and the highest developmental rate fell within the range 27–30°C. The field validation revealed that the Logan type III and Lactin models offered the best predictions (95.0 and 94.5%, respectively). The data obtained on developmental time and mortality at different temperatures are useful for mass rearing this predator, and the developmental models are valuable for using N. tenuis as a biological control agent.


Sign in / Sign up

Export Citation Format

Share Document