Chemical Equilibrium; Determination of an Equilibrium Constant

Author(s):  
FRANK BRESCIA ◽  
JOHN ARENTS ◽  
HERBERT MEISLICH ◽  
AMOS TURK
Author(s):  
Frank Brescia ◽  
John Arents ◽  
Herbert Meislich ◽  
Amos Turk ◽  
Eugene Weiner

Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


2021 ◽  
pp. 389-411
Author(s):  
Christopher O. Oriakhi

Fundamentals of Electrochemistry build on basic oxidation-reduction reactions and present an overview of their use in electrochemical cells. The construction and operation of a galvanic cell is described with cell diagrams including the function of the electrodes (cathode and anode). Also covered are the standard electrode potential and its applications, including calculations involving the standard electrode potential, the Gibbs free energy and the equilibrium constant, determination of the spontaneity in redox reactions and the dependence of cell potential on concentration (the Nernst equation). Finally a qualitative and quantitative overview of electrolysis is presented with a focus on predicting the products of electrolysis and the stoichiometry of electrolysis, which relates the charge flowing through an electrolytic cell to the amount of products formed at the electrodes.


Sign in / Sign up

Export Citation Format

Share Document