Assessment of Cation Trapping by Cellular Acidic Compartments

Author(s):  
François Marceau ◽  
Caroline Roy ◽  
Johanne Bouthillier
Keyword(s):  
1999 ◽  
Vol 298 (3) ◽  
pp. 527-537 ◽  
Author(s):  
Megumi Inoue ◽  
Hisaho Yoshida ◽  
Toshitaka Akisaka
Keyword(s):  
Low Ph ◽  

1998 ◽  
Vol 9 (12) ◽  
pp. 3561-3578 ◽  
Author(s):  
Harri Palokangas ◽  
Ming Ying ◽  
Kalervo Väänänen ◽  
Jaakko Saraste

The effect of the vacuolar H+-ATPase inhibitor bafilomycin A1 (Baf A1) on the localization of pre-Golgi intermediate compartment (IC) and Golgi marker proteins was used to study the role of acidification in the function of early secretory compartments. Baf A1 inhibited both brefeldin A- and nocodazole-induced retrograde transport of Golgi proteins to the endoplasmic reticulum (ER), whereas anterograde ER-to-Golgi transport remained largely unaffected. Furthermore, p58/ERGIC-53, which normally cycles between the ER, IC, and cis-Golgi, was arrested in pre-Golgi tubules and vacuoles, and the number of p58-positive ∼80-nm Golgi (coatomer protein I) vesicles was reduced, suggesting that the drug inhibits the retrieval of the protein from post-ER compartments. In parallel, redistribution of β-coatomer protein from the Golgi to peripheral pre-Golgi structures took place. The small GTPase rab1p was detected in short pre-Golgi tubules in control cells and was efficiently recruited to the tubules accumulating in the presence of Baf A1. In contrast, these tubules showed no enrichment of newly synthesized, anterogradely transported proteins, indicating that they participate in retrograde transport. These results suggest that the pre-Golgi structures contain an active H+-ATPase that regulates retrograde transport at the ER–Golgi boundary. Interestingly, although Baf A1 had distinct effects on peripheral pre-Golgi structures, only more central, p58-containing elements accumulated detectable amounts of 3-(2,4-dinitroanilino)-3′-amino-N-methyldipropylamine (DAMP), a marker for acidic compartments, raising the possibility that the lumenal pH of the pre-Golgi structures gradually changes in parallel with their translocation to the Golgi region.


2009 ◽  
Vol 419 (3) ◽  
pp. 661-668 ◽  
Author(s):  
Blandine Maître ◽  
Catherine Angénieux ◽  
Virginie Wurtz ◽  
Emilie Layre ◽  
Martine Gilleron ◽  
...  

CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32–333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e α-chain with β2-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.


mSphere ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Teresa Cruz-Bustos ◽  
Evgeniy Potapenko ◽  
Melissa Storey ◽  
Roberto Docampo

Trypanosoma cruzi is an important human and animal pathogen and the etiologic agent of Chagas disease. The parasite undergoes drastic changes in its metabolism during its life cycle. Amino acid consumption becomes important in the infective stages and leads to the production of ammonia (NH3), which needs to be detoxified. We report here the identification of an ammonium (NH4 +) transporter that localizes to acidic compartments and is important for replication, differentiation, and resistance to starvation and osmotic stress.


2020 ◽  
Vol 432 (17) ◽  
pp. 4891-4907 ◽  
Author(s):  
Saskia J. Pollack ◽  
Jasmine Trigg ◽  
Tahmida Khanom ◽  
Luca Biasetti ◽  
Karen E. Marshall ◽  
...  

Parasitology ◽  
2003 ◽  
Vol 127 (3) ◽  
pp. 253-264 ◽  
Author(s):  
B. H. AL-ADHAMI ◽  
J. THORNHILL ◽  
A. AKHKHA ◽  
M. J. DOENHOFF ◽  
J. R. KUSEL

A variety of fluorescent probes have been used to study the acidic compartments in cercariae and schistosomula ofSchistosoma mansoni. Freshly transformed schistosomula treated with the LysoTracker Red dye specific for lysosomes showed large acid-containing compartments (0·5–10 μm in size). The uptake of the dye is an energy-dependent process that depends on the metabolic activity of schistosomula. The compartments were quantified individually with respect to area, quantity of fluorescence and the total number/schistosomulum. Under normal conditions these compartments were not found in untreated cercariae, but appeared in cercariae slightly damaged by poly-L-lysine. The formation of these compartments seemed to be related to the development of cercariae into schistosomula as the number of compartments and uptake of fluorescence increased with time after transformation. Also, the method of transformation as well as thein vitroincubation of the parasite affected the percentage area of compartments/schistosomulum. Acid phosphatase enzyme activity was assessed using an endogenous phosphatase probe. Living and fixed schistosomula displayed the presence of enzyme activity in compartments of the same size and distribution as the acid-rich compartments. This was confirmed by histochemical staining showing deposition of enzyme-generated lead at the sites of phosphatase activity. We suggest that the development of acidic compartments is important during the transformation process or as a consequence of damage.


2010 ◽  
Vol 78 (3) ◽  
pp. 907-913 ◽  
Author(s):  
Yanina A. Lamberti ◽  
Jimena Alvarez Hayes ◽  
Maria L. Perez Vidakovics ◽  
Eric T. Harvill ◽  
Maria Eugenia Rodriguez

ABSTRACT Although Bordetella pertussis has been observed to survive inside macrophages, its ability to resist or evade degradation in phagolysosomes has not been defined. We here investigated the trafficking of B. pertussis upon entry into human macrophages. During the first hours following phagocytosis, a high percentage of bacteria were destroyed within acidic compartments positive for the lysosome-associated membrane proteins (LAMP). However, roughly one-fourth of the bacteria taken up evade this initial killing event, remaining in nonacidic compartments. Forty-eight hours after infection, the number of intracellular bacteria per cell increased, suggesting that B. pertussis is capable of replicating in this type of compartment. Viable bacteria accumulated within phagosomal compartments positive for the early endosomal marker Rab5 but not the late endosomal marker LAMP. Moreover, B. pertussis-containing phagosomes acquired exogenously added transferrin, indicating that intracellular bacteria have access to extracellular components and essential nutrients via the host cell recycling pathway. Overall, these results suggest that B. pertussis survives and eventually replicates in compartments with characteristics of early endosomes, potentially contributing to its extraordinary ability to persist within hosts and populations.


Sign in / Sign up

Export Citation Format

Share Document