Combination of Different MSW Leachate Treatment Processes

2018 ◽  
pp. 633-646
Author(s):  
Hans-Jürgen Ehrig ◽  
Rainer Stegmann
2018 ◽  
Vol 47 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Mehdi Zolfaghari ◽  
Oumar Dia ◽  
Nouha Klai ◽  
Patrick Drogui ◽  
Satinder Kaur Brar ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 111 ◽  
Author(s):  
Tawfiq J. H. Banch ◽  
Marlia M. Hanafiah ◽  
Abbas F. M. Alkarkhi ◽  
Salem S. A. Amr ◽  
Nurul U. M. Nizam

Leachate is a complex liquid that is often produced from landfills, and it contains hazardous substances that may endanger the surrounding environment if ineffectively treated. In this work, four leachate treatment applications were examined: combined leachate/palm oil mill effluent (POME) (LP), leachate/tannin (LT), pre-(leachate/tannin) followed by post-(leachate/POME) (LT/LP), and pre-(leachate/POME) followed by post-(leachate/tannin) (LP/LT). The aim of this work is to evaluate and compare the performance of these treatment applications in terms of optimizing the physicochemical parameters and removing heavy metals from the leachate. The highest efficiency for the optimization of the most targeted physicochemical parameters and the removal of heavy metals was with the LP/LT process. The results are indicative of three clusters. The first cluster involves raw leachate (cluster 1), the second contains LP and LP/LT (cluster 2), and the third also consists of two treatment applications, namely, LT and LT/LP (cluster 3). The results demonstrate that LP/LT is the most appropriate method for leachate treatment using low-cost agro-industrial materials.


2015 ◽  
Vol 73 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Ahmed H. Hilles ◽  
Salem S. Abu Amr ◽  
Rim A. Hussein ◽  
Anwar I. Arafa ◽  
Olfat D. El-Sebaie

The objective of this study was to investigate the performance of employing H2O2 reagent in persulfate activation to treat stabilized landfill leachate. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as persulfate and H2O2 dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following two responses proved to be significant with very low probabilities (<0.0001): chemical oxygen demand (COD) and NH3-N removal. The obtained optimum conditions included a reaction time of 116 min, 4.97 g S2O82−, 7.29 g H2O2 dosage and pH 11. The experimental results were corresponding well with predicted models (COD and NH3-N removal rates of 81% and 83%, respectively). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as persulfate only and H2O2 only, to evaluate its effectiveness. The combined method (i.e., /S2O82−/H2O2) achieved higher removal efficiencies for COD and NH3-N compared with other studied applications.


Author(s):  
Amin Mojiri ◽  
Lou Ziyang ◽  
Wang Hui ◽  
Ali Gholami

Municipal solid waste has continued to be a major problem in many nations of the world. The primary methods of treating landfill leachate include physical-chemical and biological treatment processes. Pressure-driven membrane processes, such as microfiltration, ultrafiltration, nanofiltration, and reverse osmosis (RO), are among the utmost promising and capable ways for treating landfill leachate. The concentrated leachate created from pressure-driven membrane processes typically represents 13%–30% of total incoming landfill leachate. Concentrated leachate is a dark brown solution with high levels of pollutants. Treating concentrated leachate is extremely difficult, and thus, a combined treatment system is suggested. In the present study, concentrated landfill leachate was treated using a combined treatment technique that included electro-ozonation. The removal efficacies of chemical oxygen demand (COD), color, and nickel were monitored at original pH (7.3) as well as current and voltage of 4 A and 9 V, respectively.


2021 ◽  
Vol 55 (6) ◽  
pp. 3756-3764
Author(s):  
Lin Xu ◽  
Shihe Xu ◽  
Zichun Huang ◽  
Xiaoling Xiang ◽  
Yaqi Cai

2020 ◽  
Vol 81 (12) ◽  
pp. 2606-2616
Author(s):  
Chenjia Shao ◽  
Yongyuan Yang ◽  
Ze Liu ◽  
Qiaoling Wang ◽  
Zengwen Ji ◽  
...  

Abstract Surrogate measurements based on excitation-emission matrix fluorescence spectra (EEMs) and ultraviolet-visible absorption spectra (UV-vis) were used to monitor the evolution of dissolved organic matter (DOM) in landfill leachate during a combination of biological and physical-chemical treatment consisting of partial nitritation-anammox (PN-Anammox) or nitrification-denitrification (N-DN) combined with granular active carbon adsorption (GAC). PN-Anammox resulted in higher nitrogen removal (81%), whereas N-DN required addition of an external carbon source to increase nitrogen removal from 24% to 56%. Four DOM components (C1 to C4) were identified by excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). N-DN showed a greater ability to remove humic-like components (C1 and C3), while the protein-like component (C4) was better removed by PN-Anammox. Both biological treatment processes showed limited removal of the medium molecular humic-like component (C2). In addition, the synergistic effect of biological treatments and adsorption was studied. The combination of PN-Anammox and GAC adsorption could remove C4 completely and also showed a good removal efficiency for C1 and C2. The Thomas model of adsorption revealed that GAC had the maximum adsorption capacity for PN-Anammox treated leachate. This study demonstrated better removal of nitrogen and fluorescence DOM by a combination of PN-Anammox and GAC adsorption, and provides practical and technical support for improved landfill leachate treatment.


2021 ◽  
pp. 127732
Author(s):  
Carlos Alberto dos Santos Vaz ◽  
Gisella Lamas Samanamud ◽  
Ricardo Soares da Silva ◽  
Alexandre Boscaro França ◽  
Cristiane Medina Finzi Quintão ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document