organic matter fractionation
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 1)

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Sarah Duddigan ◽  
Liz J. Shaw ◽  
Paul D. Alexander ◽  
Chris D. Collins

Selecting a suitable physical fractionation method, to investigate soil organic matter dynamics, from the plethora that are available is a difficult task. Using five different physical fractionation methods, on soils either nontreated or with a history of amendment with a range of exogenous organic matter inputs (Irish moss peat; composted horse manure; garden compost) and a resulting range of carbon contents (6.8 to 22.2%), we show that method selection had a significant impact on both the total C recovered and the distribution of the recovered C between unprotected, physically protected, or chemically protected conceptual pools. These between-method differences most likely resulted from the following: (i) variation in the methodological fractions obtained (i.e., distinguishing between aggregate size classes); (ii) their subsequent designation to conceptual pools (e.g., protected versus unprotected); and (iii) the procedures used in sample pretreatment and subsequent aggregate dispersion and fractionation steps. The performance of each method also varied depending on the amendment in question. The findings emphasise the need for an understanding of the nature of the soil samples under investigation, and the stabilisation mechanism of interest, both prior to method selection and when comparing and interpreting findings from literature studies using different fractionation methods.


2019 ◽  
Vol 182 (2) ◽  
pp. 145-148 ◽  
Author(s):  
Thiago M. Inagaki ◽  
Carsten W. Mueller ◽  
Johannes Lehmann ◽  
Ingrid Kögel-Knabner

2018 ◽  
Vol 47 (2) ◽  
pp. 297-305 ◽  
Author(s):  
Mehdi Zolfaghari ◽  
Oumar Dia ◽  
Nouha Klai ◽  
Patrick Drogui ◽  
Satinder Kaur Brar ◽  
...  

2015 ◽  
Vol 194 ◽  
pp. 344-353 ◽  
Author(s):  
Julie Jimenez ◽  
Quentin Aemig ◽  
Nicolas Doussiet ◽  
Jean-Philippe Steyer ◽  
Sabine Houot ◽  
...  

2015 ◽  
Vol 36 ◽  
pp. 44-56 ◽  
Author(s):  
Jeremy Denes ◽  
Anne Tremier ◽  
Safya Menasseri-Aubry ◽  
Christian Walter ◽  
Laurette Gratteau ◽  
...  

2014 ◽  
Vol 15 (1) ◽  
pp. 75-83 ◽  
Author(s):  
J. Agbaba ◽  
J. Molnar ◽  
A. Tubić ◽  
M. Watson ◽  
S. Maletić ◽  
...  

In this study the influence of water matrix and oxidation treatment by ozone on natural organic matter (NOM) fractionation and corresponding disinfection by-products formation was investigated. Three water types were selected, based on their different NOM contents (5.16–9.85 mg/L dissolved organic carbon (DOC)) and structures (42–79% proportion of hydrophobic NOM fraction). It was determined that increasing the ozone dose (0.2–0.8 mg O3/mg DOC) generally led to reductions in DOC (2–26%) and trihalomethane formation potential values (4–58%). Results of NOM fractionation showed that the reactivity of all the individual NOM fractions towards trihalomethane formation decreased after ozone oxidation (0.8 mg O3/mg DOC) by 47–69%, relative to the raw waters.


2013 ◽  
Vol 14 (4) ◽  
pp. 399-406

The main objective of this study was to characterize the organic matter present in raw water and along the treatment process, as well as its seasonal variation. A natural organic matter fractionation approach has been applied to Lever water treatment plant located in Douro River, in Oporto (Portugal). The process used was based on the sorption of dissolved organic matter in different types of ion exchange resins, DAX-8, DAX-4 and IRA-958, allowing its separation into four fractions: very hydrophobic acids (VHA), slightly hydrophobic acids (SHA), charged hydrophilic (CHA) and hydrophilic neutral (NEU). The dissolved organic carbon (DOC) determination was used to quantify dissolved organic matter. Samples were collected monthly, during approximately one year, from raw water captured at the surface and under the bed of the river, and after each step of the treatment: pre-filtration in sand/anthracite filters, ozonation, coagulation/flocculation, counter current dissolved air flotation and filtration (CoCoDAFF) and chlorination. The NEU fraction showed a seasonal variation, with maximum values in autumn for the sampling points corresponding to raw water captured at the surface and under the bed of the river. It was usually the predominating fraction and did not show a significant decrease throughout the treatment. Nevertheless their low concentration, the same occurred for the CHA and VHA fractions. There was an overall decrease in the SHA fraction throughout the water treatment (especially after CoCoDAFF and ozonation) as well as in the DOC. The TSUVA254 values obtained for raw water generally varied between 2.0 and 4.0 L mgC-1 m-1 and between 0.75 and 1.78 L mgC-1 m-1 for treated water. It was observed a decrease of TSUVA values along the treatment, especially after ozonation. These results may contribute to a further optimization in the process of treating water for human consumption.


Sign in / Sign up

Export Citation Format

Share Document