High-Throughput Crystallography and Its Applications in Drug Discovery

Author(s):  
H. Nar ◽  
D. Fiegen ◽  
S. Hörer ◽  
A. Pautsch ◽  
D. Reinert
2006 ◽  
Vol 361 (1467) ◽  
pp. 413-423 ◽  
Author(s):  
Tom L Blundell ◽  
Bancinyane L Sibanda ◽  
Rinaldo Wander Montalvão ◽  
Suzanne Brewerton ◽  
Vijayalakshmi Chelliah ◽  
...  

Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding.


2019 ◽  
Author(s):  
Michael Gerckens ◽  
Hani Alsafadi ◽  
Darcy Wagner ◽  
Katharina Heinzelmann ◽  
Kenji Schorpp ◽  
...  

2003 ◽  
Vol 9 (1) ◽  
pp. 49-58
Author(s):  
Margit Asmild ◽  
Nicholas Oswald ◽  
Karen M. Krzywkowski ◽  
Søren Friis ◽  
Rasmus B. Jacobsen ◽  
...  

2021 ◽  
pp. 247255522110232
Author(s):  
Michael D. Scholle ◽  
Doug McLaughlin ◽  
Zachary A. Gurard-Levin

Affinity selection mass spectrometry (ASMS) has emerged as a powerful high-throughput screening tool used in drug discovery to identify novel ligands against therapeutic targets. This report describes the first high-throughput screen using a novel self-assembled monolayer desorption ionization (SAMDI)–ASMS methodology to reveal ligands for the human rhinovirus 3C (HRV3C) protease. The approach combines self-assembled monolayers of alkanethiolates on gold with matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry (MS), a technique termed SAMDI-ASMS. The primary screen of more than 100,000 compounds in pools of 8 compounds per well was completed in less than 8 h, and informs on the binding potential and selectivity of each compound. Initial hits were confirmed in follow-up SAMDI-ASMS experiments in single-concentration and dose–response curves. The ligands identified by SAMDI-ASMS were further validated using differential scanning fluorimetry (DSF) and in functional protease assays against HRV3C and the related SARS-CoV-2 3CLpro enzyme. SAMDI-ASMS offers key benefits for drug discovery over traditional ASMS approaches, including the high-throughput workflow and readout, minimizing compound misbehavior by using smaller compound pools, and up to a 50-fold reduction in reagent consumption. The flexibility of this novel technology opens avenues for high-throughput ASMS assays of any target, thereby accelerating drug discovery for diverse diseases.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Chandrashekhar U. Murade ◽  
Samata Chaudhuri ◽  
Ibtissem Nabti ◽  
Hala Fahs ◽  
Fatima S. M. Refai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document