THE ELECTRON MICROPROBE X-RAY ANALYSIS OF FROZEN-HYDRATED SECTIONS WITH NEW INFORMATION ON FLUID TRANSPORTING EPITHELIA

Author(s):  
Brij L. Gupta
Author(s):  
G.E. Ice

The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. With new x-ray optics these microprobes can achieve micron and submicron spatial resolutions. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature will have important applications to materials science. For example, x-ray fluorescent microanalysis of materials can reveal elemental distributions with greater sensitivity than alternative nondestructive probes. In materials, segregation and nonuniform distributions are the rule rather than the exception. Common interfaces to whichsegregation occurs are surfaces, grain and precipitate boundaries, dislocations, and surfaces formed by defects such as vacancy and interstitial configurations. In addition to chemical information, an x-ray diffraction microprobe can reveal the local structure of a material by detecting its phase, crystallographic orientation and strain.Demonstration experiments have already exploited the penetrating nature of an x-ray microprobe and its inherent elemental sensitivity to provide new information about elemental distributions in novel materials.


Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


2006 ◽  
Vol 46 ◽  
pp. 93-97 ◽  
Author(s):  
J. Stelling ◽  
Harald Behrens ◽  
Joachim Deubener ◽  
Stefan Mangold ◽  
Joerg Goettlicher

Diffusion and solubility of sulphur have important effects on the degassing of silicate melts. Both properties are closely related to the structural incorporation of sulphur in the melt. Depending on the oxygen fugacity, sulphur can be present as sulphide (S2-), sulphite (S4+) or sulphate (S6+). Sulphates play an important role in the industrial production of glasses especially in the fining process. The decomposition products of sulphate amass in bubbles which ascend and homogenize the melt. Structural incorporation of sulphur in glasses is studied by XANES (X-ray Absorption Near Edge Spectroscopy). Diffusion of sulphur is investigated in simple silicate systems using the diffusion couple technique. First diffusion profiles were measured in sodium trisilicate glasses by electron microprobe. The results indicate that sulphur diffusivity in high temperature melts is close to the Eyring diffusivity calculated from viscosity data.


2003 ◽  
Vol 75 (23) ◽  
pp. 6576-6585 ◽  
Author(s):  
Udo Rohr ◽  
Hugo M. Ortner ◽  
Stephan Weinbruch

1996 ◽  
Vol 437 ◽  
Author(s):  
Gene Ice ◽  
Cullie Sparks ◽  
J. Lee Robertson ◽  
J. Ernest Epperson ◽  
Xiaogang Jiang

AbstractAtom size differences induce static displacements from an average alloy lattice and play an important role in controlling alloy phase stability and properties. The details of this role however, are difficult to study; chemical order and displacements are strongly interrelated and static displacements are hard to measure. Diffuse x-ray scattering measurements with tunable-synchrotron radiation can now measure element-specific static displacements with an accuracy of ± 0.1 pm and can simultaneously measure local chemical order out to 20 shells or more. Ideal alloys for diffuse scattering analysis with synchrotron radiation, are those that have previously been the most intractable: alloys with small Z contrast, alloys with only local order and alloys with small size differences. The combination of precise characterization of local chemical order and precise measurement of static displacement provides new information that challenges existing alloy models. We report on an ongoing systematic study of static displacements in the Fe/Ni/Cr alloys and compare the observed static displacements to the static displacements predicted by current theories. The availability of more brilliant 3rd generation hard x-ray sources will greatly enhance these measurements.


1977 ◽  
Vol 55 (11) ◽  
pp. 1516-1523 ◽  
Author(s):  
D. J. Weber ◽  
H. P. Rasmussen ◽  
W. M. Hess

The halophyte Salicornia pacifica var. utahensis grows in the desert saline playa. The fused leaves form succulent stems and have apparently isolated tracheids in the palisade region as observed by scanning electron microscopy. Frozen shoots were fractured under liquid nitrogen and scanned for Na+, K+, and Cl− with an electron microprobe X-ray analyzer. In young shoots, the palisade cells were low in salts, and the spongy cells had higher concentrations. The salt in the spongy cells provides a high osmotic pressure permitting the plant to absorb more water from the soil. As the shoots matured, the concentration of salts increased in the spongy cells, and the amount of salt in the palisades also increased. The salt ions in the palisades were excluded from the organelles and were mainly present in the vacuoles. Eventually, the leaf section collapsed because of the high salt in the palisade and spongy cells, but the vascular region in the shriveled section continued to function. The sections adjacent to the dead shriveled section remained green and succulent. The salt tolerance appeared to be based on the exclusion of the salt from the photosynthetic cells and on the ability of the succulent stem to function even though sections were dead owing to high salt concentration.


2016 ◽  
Vol 80 (7) ◽  
pp. 1243-1254 ◽  
Author(s):  
I. E. Grey ◽  
E. Keck ◽  
W. G. Mumme ◽  
A. Pring ◽  
C. M. Macrae ◽  
...  

AbstractKummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+0.37Mg0.27Zn0.03Fe2+0.33)Σ1.00(Fe3+1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.


2002 ◽  
Vol 66 (3) ◽  
pp. 460-485 ◽  
Author(s):  
M. Clelia Ganoza ◽  
Michael C. Kiel ◽  
Hiroyuki Aoki

SUMMARY Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.


Sign in / Sign up

Export Citation Format

Share Document