Topochemical Speciation of Intercalated Palladium in Graphite by Valence Band X-ray Spectrometry in the Electron Microprobe

2003 ◽  
Vol 75 (23) ◽  
pp. 6576-6585 ◽  
Author(s):  
Udo Rohr ◽  
Hugo M. Ortner ◽  
Stephan Weinbruch
Author(s):  
Karen A. Katrinak ◽  
James R. Anderson ◽  
Peter R. Buseck

Aerosol samples were collected in Phoenix, Arizona on eleven dates between July 1989 and April 1990. Elemental compositions were determined for approximately 1000 particles per sample using an electron microprobe with an energy-dispersive x-ray spectrometer. Fine-fraction samples (particle cut size of 1 to 2 μm) were analyzed for each date; coarse-fraction samples were also analyzed for four of the dates.The data were reduced using multivariate statistical methods. Cluster analysis was first used to define 35 particle types. 81% of all fine-fraction particles and 84% of the coarse-fraction particles were assigned to these types, which include mineral, metal-rich, sulfur-rich, and salt categories. "Zero-count" particles, consisting entirely of elements lighter than Na, constitute an additional category and dominate the fine fraction, reflecting the importance of anthropogenic air pollutants such as those emitted by motor vehicles. Si- and Ca-rich mineral particles dominate the coarse fraction and are also numerous in the fine fraction.


2006 ◽  
Vol 46 ◽  
pp. 93-97 ◽  
Author(s):  
J. Stelling ◽  
Harald Behrens ◽  
Joachim Deubener ◽  
Stefan Mangold ◽  
Joerg Goettlicher

Diffusion and solubility of sulphur have important effects on the degassing of silicate melts. Both properties are closely related to the structural incorporation of sulphur in the melt. Depending on the oxygen fugacity, sulphur can be present as sulphide (S2-), sulphite (S4+) or sulphate (S6+). Sulphates play an important role in the industrial production of glasses especially in the fining process. The decomposition products of sulphate amass in bubbles which ascend and homogenize the melt. Structural incorporation of sulphur in glasses is studied by XANES (X-ray Absorption Near Edge Spectroscopy). Diffusion of sulphur is investigated in simple silicate systems using the diffusion couple technique. First diffusion profiles were measured in sodium trisilicate glasses by electron microprobe. The results indicate that sulphur diffusivity in high temperature melts is close to the Eyring diffusivity calculated from viscosity data.


2009 ◽  
Vol 94 (2) ◽  
pp. 022108 ◽  
Author(s):  
R. Deng ◽  
B. Yao ◽  
Y. F. Li ◽  
Y. M. Zhao ◽  
B. H. Li ◽  
...  

1977 ◽  
Vol 55 (11) ◽  
pp. 1516-1523 ◽  
Author(s):  
D. J. Weber ◽  
H. P. Rasmussen ◽  
W. M. Hess

The halophyte Salicornia pacifica var. utahensis grows in the desert saline playa. The fused leaves form succulent stems and have apparently isolated tracheids in the palisade region as observed by scanning electron microscopy. Frozen shoots were fractured under liquid nitrogen and scanned for Na+, K+, and Cl− with an electron microprobe X-ray analyzer. In young shoots, the palisade cells were low in salts, and the spongy cells had higher concentrations. The salt in the spongy cells provides a high osmotic pressure permitting the plant to absorb more water from the soil. As the shoots matured, the concentration of salts increased in the spongy cells, and the amount of salt in the palisades also increased. The salt ions in the palisades were excluded from the organelles and were mainly present in the vacuoles. Eventually, the leaf section collapsed because of the high salt in the palisade and spongy cells, but the vascular region in the shriveled section continued to function. The sections adjacent to the dead shriveled section remained green and succulent. The salt tolerance appeared to be based on the exclusion of the salt from the photosynthetic cells and on the ability of the succulent stem to function even though sections were dead owing to high salt concentration.


2016 ◽  
Vol 80 (7) ◽  
pp. 1243-1254 ◽  
Author(s):  
I. E. Grey ◽  
E. Keck ◽  
W. G. Mumme ◽  
A. Pring ◽  
C. M. Macrae ◽  
...  

AbstractKummerite, ideally Mn2+Fe3+A1(PO4)2(OH)2.8H2O, is a new secondary phosphate mineral belonging to the laueite group, from the Hagendorf-Süd pegmatite, Hagendorf, Oberpfalz, Bavaria, Germany. Kummerite occurs as sprays or rounded aggregates of very thin, typically deformed, amber yellow laths. Cleavage is good parallel to ﹛010﹜. The mineral is associated closely with green Zn- and Al-bearing beraunite needles. Other associated minerals are jahnsite-(CaMnMn) and Al-bearing frondelite. The calculated density of kummerite is 2.34 g cm 3. It is optically biaxial (-), α= 1.565(5), β = 1.600(5) and y = 1.630(5), with weak dispersion. Pleochroism is weak, with amber yellow tones. Electron microprobe analyses (average of 13 grains) with H2O and FeO/Fe2O3 calculated on structural grounds and normalized to 100%, gave Fe2O3 17.2, FeO 4.8, MnO 5.4, MgO 2.2, ZnO 0.5, Al2O3 9.8, P2O5 27.6, H2O 32.5, total 100 wt.%. The empirical formula, based on 3 metal apfu is (Mn2+0.37Mg0.27Zn0.03Fe2+0.33)Σ1.00(Fe3+1.06Al0. 94)Σ2.00PO4)1.91(OH)2.27(H2O)7.73. Kummerite is triclinic, P1̄, with the unit-cell parameters of a = 5.316(1) Å, b =10.620(3) Å , c = 7.118(1) Å, α = 107.33(3)°, β= 111.22(3)°, γ = 72.22(2)° and V= 348.4(2) Å3. The strongest lines in the powder X-ray diffraction pattern are [dobs in Å(I) (hkl)] 9.885 (100) (010); 6.476 (20) (001); 4.942 (30) (020); 3.988 (9) (̄110); 3.116 (18) (1̄20); 2.873 (11) (1̄21). Kummerite is isostructural with laueite, but differs in having Al and Fe3+ ordered into alternate octahedral sites in the 7.1 Å trans-connected octahedral chains.


Materials ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 1978 ◽  
Author(s):  
Yasuo Nakayama ◽  
Masaki Iwashita ◽  
Mitsuru Kikuchi ◽  
Ryohei Tsuruta ◽  
Koki Yoshida ◽  
...  

Homoepitaxial growth of organic semiconductor single crystals is a promising methodology toward the establishment of doping technology for organic opto-electronic applications. In this study, both electronic and crystallographic properties of homoepitaxially grown single crystals of rubrene were accurately examined. Undistorted lattice structures of homoepitaxial rubrene were confirmed by high-resolution analyses of grazing-incidence X-ray diffraction (GIXD) using synchrotron radiation. Upon bulk doping of acceptor molecules into the homoepitaxial single crystals of rubrene, highly sensitive photoelectron yield spectroscopy (PYS) measurements unveiled a transition of the electronic states, from induction of hole states at the valence band maximum at an adequate doping ratio (10 ppm), to disturbance of the valence band itself for excessive ratios (≥ 1000 ppm), probably due to the lattice distortion.


Sign in / Sign up

Export Citation Format

Share Document