scholarly journals Evolutionary Conservation of Reactions in Translation

2002 ◽  
Vol 66 (3) ◽  
pp. 460-485 ◽  
Author(s):  
M. Clelia Ganoza ◽  
Michael C. Kiel ◽  
Hiroyuki Aoki

SUMMARY Current X-ray diffraction and cryoelectron microscopic data of ribosomes of eubacteria have shed considerable light on the molecular mechanisms of translation. Structural studies of the protein factors that activate ribosomes also point to many common features in the primary sequence and tertiary structure of these proteins. The reconstitution of the complex apparatus of translation has also revealed new information important to the mechanisms. Surprisingly, the latter approach has uncovered a number of proteins whose sequence and/or structure and function are conserved in all cells, indicating that the mechanisms are indeed conserved. The possible mechanisms of a new initiation factor and two elongation factors are discussed in this context.

Author(s):  
Amar Prajapati ◽  
Airi Palva ◽  
Ingemar von Ossowski ◽  
Vengadesan Krishnan

Adhesion to host surfaces for bacterial survival and colonization involves a variety of molecular mechanisms. Ligilactobacillus ruminis, a strict anaerobe and gut autochthonous (indigenous) commensal, relies on sortase-dependent pili (LrpCBA) for adherence to the intestinal inner walls, thereby withstanding luminal content flow. Here, the LrpCBA pilus is a promiscuous binder to gut collagen, fibronectin and epithelial cells. Structurally, the LrpCBA pilus displays a representative hetero-oligomeric arrangement and consists of three types of pilin subunit, each with its own location and function, i.e. tip LrpC for adhesion, basal LrpB for anchoring and backbone LrpA for length. To provide further structural insights into the assembly, anchoring and functional mechanisms of sortase-dependent pili, each of the L. ruminis pilus proteins was produced recombinantly for crystallization and X-ray diffraction analysis. Crystals of LrpC, LrpB, LrpA and truncated LrpA generated by limited proteolysis were obtained and diffracted to resolutions of 3.0, 1.5, 2.2 and 1.4 Å, respectively. Anomalous data were also collected from crystals of selenomethionine-substituted LrpC and an iodide derivative of truncated LrpA. Successful strategies for protein production, crystallization and derivatization are reported.


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
G.E. Ice

The increasing availability of synchrotron x-ray sources has stimulated the development of advanced hard x-ray (E≥5 keV) microprobes. With new x-ray optics these microprobes can achieve micron and submicron spatial resolutions. The inherent elemental and crystallographic sensitivity of an x-ray microprobe and its inherently nondestructive and penetrating nature will have important applications to materials science. For example, x-ray fluorescent microanalysis of materials can reveal elemental distributions with greater sensitivity than alternative nondestructive probes. In materials, segregation and nonuniform distributions are the rule rather than the exception. Common interfaces to whichsegregation occurs are surfaces, grain and precipitate boundaries, dislocations, and surfaces formed by defects such as vacancy and interstitial configurations. In addition to chemical information, an x-ray diffraction microprobe can reveal the local structure of a material by detecting its phase, crystallographic orientation and strain.Demonstration experiments have already exploited the penetrating nature of an x-ray microprobe and its inherent elemental sensitivity to provide new information about elemental distributions in novel materials.


2006 ◽  
Vol 153 (11) ◽  
pp. A2152 ◽  
Author(s):  
Kyung Yoon Chung ◽  
Won-Sub Yoon ◽  
James McBreen ◽  
Xiao-Qing Yang ◽  
Si Hyoung Oh ◽  
...  

Biochemistry ◽  
1972 ◽  
Vol 11 (6) ◽  
pp. 945-949 ◽  
Author(s):  
R. P. Rand ◽  
S. SenGupta

Author(s):  
S. Huband ◽  
D. S. Keeble ◽  
N. Zhang ◽  
A. M. Glazer ◽  
A. Bartasyte ◽  
...  

Powders of lithium niobate-tantalate across the full compositional range have been made and crystals grown using a lithium vanadate flux growth technique. The Li-content of a lithium tantalate crystal has been determined using the zero-birefringence temperature and Curie measurements, confirming the Li content is between that of congruent and stoichiometric crystals. X-ray diffraction measurements show the Nb/Ta displacement and octahedral tilt both decrease as the Ta content is increased. This also results in a decrease in the lattice parameters from lithium niobate to lithium tantalate. Birefringence measurements on the crystals as a function of temperature have been used to determine the point that the crystals become zero-birefringent, and by comparison with the structural studies have confirmed that it is not related to a phase transition and the structures remain polar through the zero-birefringence points.


2021 ◽  
Vol 77 (3) ◽  
pp. 137-143
Author(s):  
Ismail Fidan ◽  
Emel Onal ◽  
Catherine Hirel

The syntheses of 4-[4-(4,4,5,5-tetramethyl-2-imidazoline-3-oxide-1-oxyl-2-yl)phenoxy]phthalonitrile (3, C21H19N4O3) and 4-[4-(4,4,5,5-tetramethyl-2-imidazoline-1-oxyl-2-yl)phenoxy]phthalonitrile (4) were carried out by microwave-assisted nucleophilic aromatic substitution of 4-nitrophthalonitrile (2) by the pre-formed 2-(4-hydroxyphenyl)-4,4,5,5-tetramethyl-2-imidazoline-3-oxide-1-oxyl (1). Compounds 3 and 4 were characterized unambiguously by a rich array of analyses, such as melting point, FT–IR, MALDI–TOF MS, elemental analysis, UV–Vis, CV, EPR, magnetic measurements and single-crystal X-ray diffraction. Structural studies demonstrate that the C—H...X and C—X...π (X = O and N) interactions in the radical nitronyl nitroxide groups play an important role in the assembly of the crystal structures. Moreover, cyclic voltammetry analyses show that the phthalonitrile substituent retains the redox properties of the Ullman radicals.


2018 ◽  
Vol 7 (3.11) ◽  
pp. 48
Author(s):  
Kevin Alvin Eswar ◽  
Mohd Husairi Fadzillah Suhaimi ◽  
Muliyadi Guliling ◽  
Zuraida Khusaimi ◽  
Mohamad Rusop ◽  
...  

ZnO Nanostructures have been successfully deposited on of Porous silicon (PSi) via wet colloid chemical approach. PSi was prepared by electrochemical etching method. ZnO/PSi thin films were annealed in different temperature in the range of 300 °C to 700 °C. Surface morphology studies were conducted using field emission scanning microscopy (FESEM). Flower-like structures of ZnO were clearly seen at annealing temperature of 500 °C. The X-ray diffraction spectra (XRD) have been used to investigate the structural properties. There are three dominant peaks referred to plane (100), (002) and (101) indicates that ZnO has a polycrystalline hexagonal wurtzite structures. Plane (002) shows the highest intensities at annealing temperature of 500 °C. Based on plane (002) analysis, the sizes were in range of 30.78 nm to 55.18. In addition, it was found that the texture coefficient of plane (002) is stable compared to plane (100) and (101). 


Sign in / Sign up

Export Citation Format

Share Document