Regulation of Gene Expression in the Eukaryotic Cell

Author(s):  
B.W. O'MALLEY ◽  
M.J. TSAI ◽  
H.C. TOWLE
2021 ◽  
Vol 7 (8) ◽  
pp. 624
Author(s):  
Ulises Carrasco-Navarro ◽  
Jesús Aguirre

Reactive oxygen species (ROS) regulate several aspects of cell physiology in filamentous fungi including the antioxidant response and development. However, little is known about the signaling pathways involved in these processes. Here, we report Aspergillus nidulans global phosphoproteome during mycelial growth and show that under these conditions, H2O2 induces major changes in protein phosphorylation. Among the 1964 phosphoproteins we identified, H2O2 induced the phosphorylation of 131 proteins at one or more sites as well as the dephosphorylation of a larger set of proteins. A detailed analysis of these phosphoproteins shows that H2O2 affected the phosphorylation of critical regulatory nodes of phosphoinositide, MAPK, and TOR signaling as well as the phosphorylation of multiple proteins involved in the regulation of gene expression, primary and secondary metabolism, and development. Our results provide a novel and extensive protein phosphorylation landscape in A. nidulans, indicating that H2O2 induces a shift in general metabolism from anabolic to catabolic, and the activation of multiple stress survival pathways. Our results expand the significance of H2O2 in eukaryotic cell signaling.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


2011 ◽  
Vol 33 (12) ◽  
pp. 1300-1307
Author(s):  
Xiu-Jun ZHANG ◽  
Mei-Ling LIU ◽  
Meng-Chun JIA

2017 ◽  
Vol 63 (5) ◽  
pp. 695-702
Author(s):  
Oleg Kit ◽  
Dmitriy Vodolazhskiy ◽  
Yelena Frantsiyants ◽  
Svetlana Panina ◽  
E. Rastorguev ◽  
...  

Glioblastoma multiforme (GBM) is the most common and invasive poorly differentiated brain tumor with nearly 100 % rate of recurrence and unfavorable prognosis. The aim of the present review is to analyze recent studies and experimental results (Scopus, Web of Science, PubMed) concerning somatic mutations in glioblastoma, aberrant regulation of gene expression of signal pathways including EGFR, TGFß, etc. and markers for GBM progression. Particularly the molecular subtypes of glioblastoma and NGS results are considered in this review.


Sign in / Sign up

Export Citation Format

Share Document