THERMAL ISOLATION WITH LOW-CONDUCTANCE INTERSTITIAL MATERIALS UNDER COMPRESSIVE LOADS

Author(s):  
Paul A. Smuda ◽  
Donald A. Gyorog
2021 ◽  
pp. 096739112110233
Author(s):  
Mohammad Hassan Shojaeefard ◽  
Abolfazl Khalkhali ◽  
Sharif Khakshournia

It has been demonstrated that adding a few percent of nanoscale reinforcements, leads to remarkable improvement in mechanical properties of the polymers such as stiffness, damping, and energy absorption. These lightweight materials are attractive substitutes for the heavy metallic structural parts in the automotive, military, aerospace and many other industries. However, due to complexity of these multiphase materials, accurate modeling of their behavior in real loading cases is still ambiguous. The impact simulation is a vital step in design procedure of a vehicle, where a strain rate-dependent model of its components is required. In this paper, an elasto-viscoplastic modeling procedure of the polymer-based nanocomposites, assuming the elastic behavior of the nano-phase is presented; whereas the polymeric matrix deformation is dependent to the loading rate and is characterized by the method of Genetic algorithm optimization-based fitting to the experimental observations. By introducing a modified Halpin-Tsai method, the nanocomposite is then modeled as a homogenized material where the modification algorithm is the main challenge. A combination of approaches including parametric analysis, central composite design of experiments and response surface method is proposed to modify the tangent modulus of the polymeric matrix to be passed as the input to the Halpin-Tsai equations. Finally, the procedure is implemented to a set of epoxy-GNP nanocomposites under unidirectional compressive loads with different rates and the stress-strain curves are predicted with a decent precision.


2019 ◽  
pp. 347-373
Author(s):  
Yang Zhang ◽  
Hanju Oh ◽  
Yue Zhang ◽  
Li Zheng ◽  
Gary S. May ◽  
...  
Keyword(s):  

2019 ◽  
Vol 6 (2) ◽  
pp. 43 ◽  
Author(s):  
Harold J. Brandon ◽  
Larry S. Nichter ◽  
Dwight D. Back

The IDEAL IMPLANT® Structured Breast Implant is a dual lumen saline-filled implant with capsular contracture and deflation/rupture rates much lower than single-lumen silicone gel-filled implants. To better understand the implant’s mechanical properties and to provide a potential explanation for these eight-year clinical results, a novel approach to compressive load testing was employed. Multi-dimensional strains and tangent moduli, metrics describing the shape stability of the total implant, were derived from the experimental load and platen spacing data. The IDEAL IMPLANT was found to have projection, diametric, and areal strains that were generally less than silicone gel implants, and tangent moduli that were generally greater than silicone gel implants. Despite having a relatively inviscid saline fill, the IDEAL IMPLANT was found to be more shape stable compared to gel implants, which implies potentially less interaction with the capsule wall when the implant is subjected to compressive loads. Under compressive loads, the shape stability of a higher cross-link density, cohesive gel implant was unexpectedly found to be similar to or the same as a gel implant. In localized diametric compression testing, the IDEAL IMPLANT was found to have a palpability similar to a gel implant, but softer than a cohesive gel implant.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Johann Zwirner ◽  
Aqeeda Singh ◽  
Francesca Templer ◽  
Benjamin Ondruschka ◽  
Niels Hammer

AbstractIt is unclear whether plantar and posterior heel spurs are truly pathological findings and whether they are stimulated by traction or compression forces. Previous histological investigations focused on either one of the two spur locations, thereby potentially overlooking common features that refer to a uniform developmental mechanism. In this study, 19 feet from 16 cadavers were X-ray scanned to preselect calcanei with either plantar or posterior spurs. Subsequently, seven plantar and posterior spurs were histologically assessed. Five spur-free Achilles tendon and three plantar fascia entheses served as controls. Plantar spurs were located either intra- or supra-fascial whereas all Achilles spurs were intra-fascial. Both spur types consistently presented a trabecular architecture without a particular pattern, fibrocartilage at the tendinous entheses and the orientation of the spur tips was in line with the course of the attached soft tissues. Spurs of both entities revealed tapered areas close to their bases with bulky tips. Achilles and plantar heel spurs seem to be non-pathological calcaneal exostoses, which are likely results of traction forces. Both spur types revealed commonalities such as their trabecular architecture or the tip direction in relation to the attached soft tissues. Morphologically, heel spurs seem poorly adapted to compressive loads.


2009 ◽  
Vol 19 (3) ◽  
pp. 035013 ◽  
Author(s):  
Yinhua Lei ◽  
Wei Wang ◽  
Huaiqiang Yu ◽  
Yingcun Luo ◽  
Ting Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document