New Concepts of the Control of Cell Surface Structure and Function

Author(s):  
Janet M. Oliver ◽  
Joan M. Caron ◽  
Richard D. Berlin
Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


2010 ◽  
Vol 192 (22) ◽  
pp. 5953-5961 ◽  
Author(s):  
Seiji Kojima ◽  
Kyong-Cheol Ko ◽  
Yumiko Takatsuka ◽  
Naoki Abe ◽  
Jun Kaneko ◽  
...  

ABSTRACT The peptidoglycan of Selenomonas ruminantium is covalently bound to cadaverine (PG-cadaverine), which likely plays a significant role in maintaining the integrity of the cell surface structure. The outer membrane of this bacterium contains a 45-kDa major protein (Mep45) that is a putative peptidoglycan-associated protein. In this report, we determined the nucleotide sequence of the mep45 gene and investigated the relationship between PG-cadaverine, Mep45, and the cell surface structure. Amino acid sequence analysis showed that Mep45 is comprised of an N-terminal S-layer-homologous (SLH) domain followed by α-helical coiled-coil region and a C-terminal β-strand-rich region. The N-terminal SLH domain was found to be protruding into the periplasmic space and was responsible for binding to peptidoglycan. It was determined that Mep45 binds to the peptidoglycan in a manner dependent on the presence of PG-cadaverine. Electron microscopy revealed that defective PG-cadaverine decreased the structural interactions between peptidoglycan and the outer membrane, consistent with the proposed role for PG-cadaverine. The C-terminal β-strand-rich region of Mep45 was predicted to be a membrane-bound unit of the 14-stranded β-barrel structure. Here we propose that PG-cadaverine possesses functional importance to facilitate the structural linkage between peptidoglycan and the outer membrane via specific interaction with the SLH domain of Mep45.


2002 ◽  
Vol 30 (6) ◽  
pp. 1006-1010 ◽  
Author(s):  
M. K. Pangburn ◽  
N. Rawal

The multisubunit enzymes of the complement system that cleave C5 have many unusual properties, the most striking of which is that they acquire their specificity for C5 following cleavage of another substrate C3. C5 convertases are assemblies of two proteins C4b and C2a (classical or lectin pathways) or C3b and Bb (alternative pathway) and additional C3b molecules. The catalytic complexes (C4b, C2a or C3b, Bb) are intrinsically unstable (t1,2 = 1–3 min) and the enzymes are controlled by numerous regulatory proteins that accelerate this natural decay rate. Immediately after assembly, the bi-molecular enzymes preferentially cleave the protein C3 and exhibit poor activity toward C5 (a Km of approx. 25 μM and a C5 cleavage rate of 0.3-1 C5/min at Vmax). Efficient C3 activation results in the covalent attachment of C3b to the cell surface and to the enzyme itself, resulting in formation of C3b-C3b and C4b-C3b complexes. Our studies have shown that deposition of C3b alters the specificity of the enzymes of both pathways by changing the Km for C5 more than 1000-fold from far above the physiological C5 concentration to far below it. Thus, after processing sufficient C3 at the surface of a microorganism, the enzymes switch to processing C5, which initiates the formation of the cytolytic membrane attack complex of complement.


Sign in / Sign up

Export Citation Format

Share Document