Bone Loading

Author(s):  
Evan G. Buettmann ◽  
Gregory S. Lewis ◽  
Henry J. Donahue
Keyword(s):  
2010 ◽  
Vol 25 (8) ◽  
pp. 776-780 ◽  
Author(s):  
Kai-Hua Xiu ◽  
Joo-Han Kim ◽  
Zong-Ming Li
Keyword(s):  

1993 ◽  
Vol 26 (3) ◽  
pp. 315
Author(s):  
S.M. Swartz ◽  
M.B. Bennett ◽  
D.R. Carrier

PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192760
Author(s):  
Jason A. Bleedorn ◽  
Troy A. Hornberger ◽  
Craig A. Goodman ◽  
Zhengling Hao ◽  
Susannah J. Sample ◽  
...  

2018 ◽  
Vol 34 (1) ◽  
pp. 7-13
Author(s):  
Tina Smith ◽  
Sue Reeves ◽  
Lewis G. Halsey ◽  
Jörg Huber ◽  
Jin Luo

The aim of the current study was to compare bone loading due to physical activity between lean, and overweight and obese individuals. Fifteen participants (lower BMI group: BMI < 25 kg/m2, n = 7; higher BMI group: 25 kg/m2 < BMI < 36.35 kg/m2, n = 8) wore a tri-axial accelerometer on 1 day to collect data for the calculation of bone loading. The International Physical Activity Questionnaire (short form) was used to measure time spent at different physical activity levels. Daily step counts were measured using a pedometer. Differences between groups were compared using independent t-tests. Accelerometer data revealed greater loading dose at the hip in lower BMI participants at a frequency band of 0.1–2 Hz (P = .039, Cohen’s d = 1.27) and 2–4 Hz (P = .044, d = 1.24). Lower BMI participants also had a significantly greater step count (P = .023, d = 1.55). This corroborated with loading intensity (d ≥ 0.93) and questionnaire (d = 0.79) effect sizes to indicate higher BMI participants tended to spend more time in very light activity, and less time in light and moderate activity. Overall, participants with a lower BMI exhibited greater bone loading due to physical activity; participants with a higher BMI may benefit from more light and moderate level activity to maintain bone health.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7470 ◽  
Author(s):  
Alexander Synek ◽  
Szu-Ching Lu ◽  
Evie E. Vereecke ◽  
Sandra Nauwelaerts ◽  
Tracy L. Kivell ◽  
...  

Introduction Knowledge of internal finger loading during human and non-human primate activities such as tool use or knuckle-walking has become increasingly important to reconstruct the behaviour of fossil hominins based on bone morphology. Musculoskeletal models have proven useful for predicting these internal loads during human activities, but load predictions for non-human primate activities are missing due to a lack of suitable finger models. The main goal of this study was to implement both a human and a representative non-human primate finger model to facilitate comparative studies on metacarpal bone loading. To ensure that the model predictions are sufficiently accurate, the specific goals were: (1) to identify species-specific model parameters based on in vitro measured fingertip forces resulting from single tendon loading and (2) to evaluate the model accuracy of predicted fingertip forces and net metacarpal bone loading in a different loading scenario. Materials & Methods Three human and one bonobo (Pan paniscus) fingers were tested in vitro using a previously developed experimental setup. The cadaveric fingers were positioned in four static postures and load was applied by attaching weights to the tendons of the finger muscles. For parameter identification, fingertip forces were measured by loading each tendon individually in each posture. For the evaluation of model accuracy, the extrinsic flexor muscles were loaded simultaneously and both the fingertip force and net metacarpal bone force were measured. The finger models were implemented using custom Python scripts. Initial parameters were taken from literature for the human model and own dissection data for the bonobo model. Optimized model parameters were identified by minimizing the error between predicted and experimentally measured fingertip forces. Fingertip forces and net metacarpal bone loading in the combined loading scenario were predicted using the optimized models and the remaining error with respect to the experimental data was evaluated. Results The parameter identification procedure led to minor model adjustments but considerably reduced the error in the predicted fingertip forces (root mean square error reduced from 0.53/0.69 N to 0.11/0.20 N for the human/bonobo model). Both models remained physiologically plausible after the parameter identification. In the combined loading scenario, fingertip and net metacarpal forces were predicted with average directional errors below 6° and magnitude errors below 12%. Conclusions This study presents the first attempt to implement both a human and non-human primate finger model for comparative palaeoanthropological studies. The good agreement between predicted and experimental forces involving the action of extrinsic flexors—which are most relevant for forceful grasping—shows that the models are likely sufficiently accurate for comparisons of internal loads occurring during human and non-human primate manual activities.


2015 ◽  
Vol 93 (12) ◽  
pp. 945-959 ◽  
Author(s):  
K.M. Middleton ◽  
L.T. English

Pterosaurs have fascinated scientists and nonscientists alike for over 200 years, as one of the three known clades of vertebrates to have evolved flapping flight. The smallest pterosaurs were comparable in size to the smallest extant birds and bats, but the largest pterosaurs were vastly larger than any extant flier. This immense size range, coupled with poor preservation and adaptations for flight unknown in extant vertebrates, have made interpretations of pterosaur flight problematic and often contentious. Here we review the anatomical, evolutionary, and phylogenetic history of pterosaurs, as well as the views, perspectives, and biases regarding their interpretation. In recent years, three areas of pterosaur biology have faced challenges and made advances: structure of the wing membrane, function of the pteroid, body size and mass estimates, as well as flight mechanics and aerodynamics. Comparative anatomical and fossil study, simulated bone loading, and aerodynamic modeling have all proved successful in furthering our understanding of pterosaur flight. We agree with previous authors that pterosaurs should be studied as pterosaurs, a diverse but phylogenetically, anatomically, and mechanically constrained clade that can offer new insights into the diversity of vertebrate flight.


Author(s):  
Sicong Ren ◽  
Zezhao Chen ◽  
Xiong Qin ◽  
Xiaochen Zhao ◽  
Tim D. Yang ◽  
...  

2020 ◽  
Vol 62 (1) ◽  
pp. 115-132
Author(s):  
Mary F Barbe ◽  
Mamta Amin ◽  
Anne Gingery ◽  
Alex G Lambi ◽  
Steven N Popoff
Keyword(s):  

2010 ◽  
Vol 271 (12) ◽  
pp. 1527-1536 ◽  
Author(s):  
Heiko L. Schoenfuss ◽  
John D. Roos ◽  
Angela R. V. Rivera ◽  
Richard W. Blob

Sign in / Sign up

Export Citation Format

Share Document