Impact of smart meter implementation on saving electricity in distribution networks in Romania

Author(s):  
Gheorghe Grigoras
2013 ◽  
Vol 479-480 ◽  
pp. 651-655
Author(s):  
Huei Ru Tseng ◽  
Tung Hung Chueh

The smart grid is a network of computers and power infrastructures that monitor and manage energy usage and uses intelligent transmission and distribution networks to deliver electricity for improving the electric system's reliability and efficiency. With grid controls, energy transmission management could be enhanced and resilience to control-system failures would be increased. Although deploying the smart grid has numerous social and technical benefits, several security concerns arise. In 2012, Xia and Wang proposed a secure key distribution for the smart grid. They claimed their protocol is strong enough to defend against security attacks. In this paper, we investigate the security of Xia and Wang's protocol. More precisely, we show that once the smart meter generates a session key with the service provider, the smart meter could easily forge the new legitimate session key without the service provider's participation. In order to remedy the security flaw, we propose a simple and secure improvement of Xia and Wang's protocol. Our protocol is secure and fair to generate the session key between the smart meter and the service provider.


Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1156 ◽  
Author(s):  
Nikoleta Andreadou ◽  
Evangelos Kotsakis ◽  
Marcelo Masera

The modernization of the distribution grid requires a huge amount of data to be transmitted and handled by the network. The deployment of Advanced Metering Infrastructure systems results in an increased traffic generated by smart meters. In this work, we examine the smart meter traffic that needs to be accommodated by a real distribution system. Parameters such as the message size and the message transmission frequency are examined and their effect on traffic is showed. Limitations of the system are presented, such as the buffer capacity needs and the maximum message size that can be communicated. For this scope, we have used the parameters of a real distribution network, based on a survey at which the European Distribution System Operators (DSOs) have participated. For the smart meter traffic, we have used two popular specifications, namely the G3-PLC–“G3 Power Line communication” and PRIME–acronym for “PoweRline Intelligent Metering Evolution”, to simulate the characteristics of a system that is widely used in practice. The results can be an insight for further development of the Information and Communication Technology (ICT) systems that control and monitor the Low Voltage (LV) distribution grid. The paper presents an analysis towards identifying the needs of distribution networks with respect to telecommunication data as well as the main parameters that can affect the Inverse Fast Fourier Transform (IFFT) system performance. Identifying such parameters is consequently beneficial to designing more efficient ICT systems for Advanced Metering Infrastructure.


Author(s):  
Izaskun Mendia ◽  
Sergio Gil-López ◽  
Javier Del Ser ◽  
Ana González Bordagaray ◽  
Jesús García Prado ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document