advanced metering infrastructure
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 106)

H-INDEX

27
(FIVE YEARS 6)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 534
Author(s):  
Nasr Abosata ◽  
Saba Al-Rubaye ◽  
Gokhan Inalhan

The Internet of Things (IoT) connects billions of sensors to share and collect data at any time and place. The Advanced Metering Infrastructure (AMI) is one of the most important IoT applications. IoT supports AMI to collect data from smart sensors, analyse and measure abnormalities in the energy consumption pattern of sensors. However, two-way communication in distributed sensors is sensitive and tends towards security and privacy issues. Before deploying distributed sensors, data confidentiality and privacy and message authentication for sensor devices and control messages are the major security requirements. Several authentications and encryption protocols have been developed to provide confidentiality and integrity. However, many sensors in distributed systems, resource constraint smart sensors, and adaptability of IoT communication protocols in sensors necessitate designing an efficient and lightweight security authentication scheme. This paper proposes a Payload Encryption-based Optimisation Scheme for lightweight authentication (PEOS) on distributed sensors. The PEOS integrates and optimises important features of Datagram Transport Layer Security (DTLS) in Constrained Application Protocol (CoAP) architecture instead of implementing the DTLS in a separate channel. The proposed work designs a payload encryption scheme and an Optimised Advanced Encryption Standard (OP-AES). The PEOS modifies the DTLS handshaking and retransmission processes in PEOS using payload encryption and NACK messages, respectively. It also removes the duplicate features of the protocol version and sequence number without impacting the performance of CoAP. Moreover, the PEOS attempts to improve the CoAP over distributed sensors in the aspect of optimised AES operations, such as parallel execution of S-boxes in SubBytes and delayed Mixcolumns. The efficiency of PEOS authentication is evaluated on Conitki OS using the Cooja simulator for lightweight security and authentication. The proposed scheme attains better throughput while minimising the message size overhead by 9% and 23% than the existing payload-based mutual authentication PbMA and basic DTLS/CoAP scheme in random network topologies with less than 50 nodes.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 373
Author(s):  
Ivan Popović ◽  
Aleksandar Rakić ◽  
Ivan D. Petruševski

This effort to make the power grid more intelligent is tightly coupled with the deployment of advanced metering infrastructure (AMI) as an integral part of the future vision of smart grid. The goal of AMI is to provide necessary information for the consumers and utilities to accurately monitor and manage energy consumption and pricing in real time. Immediate benefits are enhanced transparency and efficiency of energy usage and the improvement of customer services. Although the road map toward successful AMI deployment is clearly defined, many challenges and issues are to be solved regarding the design of AMI. In this paper, a multi-agent AMI based on the fog-computing approach is presented. Architecture follows structural decomposition of AMI functionalities encapsulated in a form of local and area-specific service components that reside at the different tiers of hierarchically organized AMI deployment. Fog computing concepts provide the framework to effectively solve the problems of creating refined and scalable solutions capable of meeting the requirements of the AMI as a part of future smart grid. On the other hand, agent-based design enables concurrent execution of AMI operations across the distributed system architecture, in the same time improving performance of its execution and preserving the scalability of the AMI solution. The real-time performance of the proposed AMI solution, related to the periodic and on-demand acquisition of metering data from the connected electricity meters, was successfully verified during one year of pilot project operation. The detailed analysis of the performance of AMI operation regarding data collection, communication and data availability across the deployed pilot AMI, covering several transformer station areas with diverse grid topologies, is also presented.


Author(s):  
Juan David Marín García ◽  
Juan David Marin Jimenez ◽  
Sandra Ximena Carvajal Quintero

This paper aims to analyze mechanisms such as the Energy management systems approach in industry 4.0. The paper is a review of techniques for optimizing energy consumption with energy efficiency, advanced metering infrastructure and rational and efficient use of energy to reduce the pollution as well as to strengthen Industry 4.0 models and the monitoring and management opportunities that exist with the implementation of this models in Colombia.


Author(s):  
Erny Anugrahany ◽  
Guntur Supriyadi ◽  
Dimas Aji Nugraha ◽  
Oksa Prasetyawan W ◽  
M Muslih Mafruddin

Author(s):  
K. G. H. Mangunkusumo ◽  
A. S. Surya ◽  
D. R. Jintaka ◽  
H. B. Tambunan

Sign in / Sign up

Export Citation Format

Share Document