Identification of coronary plaque mechanical properties from ex vivo testing

Author(s):  
Ali C. Akyildiz ◽  
Hilary E. Barrett ◽  
Frank J.H. Gijsen
2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Wilfried Bürzle ◽  
Edoardo Mazza ◽  
John J. Moore

Puncture testing has been applied in several studies for the mechanical characterization of human fetal membrane (FM) tissue, and significant knowledge has been gained from these investigations. When comparing results of mechanical testing (puncture, inflation, and uniaxial tension), we have observed discrepancies in the rupture sequence of FM tissue and significant differences in the deformation behavior. This study was undertaken to clarify these discrepancies. Puncture experiments on FM samples were performed to reproduce previous findings, and numerical simulations were carried out to rationalize particular aspects of membrane failure. The results demonstrate that both rupture sequence and resistance to deformation depend on the samples' fixation. Soft fixation leads to slippage in the clamping, which reduces mechanical loading of the amnion layer and results in chorion rupturing first. Conversely, the stiffer, stronger, and less extensible amnion layer fails first if tight fixation is used. The results provide a novel insight into the interpretation of ex vivo testing as well as in vivo membrane rupture.


2002 ◽  
Vol 9 (1) ◽  
pp. 96-99 ◽  
Author(s):  
Armando L Karara ◽  
Viviana F Bumaschny ◽  
Gabriel L Fiszman ◽  
Cecilia C Casais ◽  
Gerardo C Glikin ◽  
...  

2007 ◽  
Vol 22 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Yasunari Ikema ◽  
Harukazu Tohyama ◽  
Ei Yamamoto ◽  
Fuminori Kanaya ◽  
Kazunori Yasuda

2010 ◽  
Vol 4 (2) ◽  
Author(s):  
Andrew Rau ◽  
Mary Frecker ◽  
Abraham Mathew ◽  
Eric Pauli

This paper presents a 3.0 mm diameter endoscopic forceps design for use in minimally invasive surgical procedures, which require significant grasping and spreading forces. Models of the proposed design predict considerable improvements in the opening range (140%) and force application (87%) for both grasping and spreading when compared with currently used endoscopic forceps. Several of the tool’s design characteristics promote fail-safe malfunctions, including locking before catastrophic failure and the decreased likelihood in detached parts. Initial benchtop testing showed good agreement between prototype performance and model prediction. Frictional losses experienced during testing were found to depend on load orientation. A surgical prototype is currently being manufactured for ex vivo testing.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Niloufar Saharkhiz ◽  
Richard Ha ◽  
Bret Taback ◽  
Xiaoyue Judy Li ◽  
Rachel Weber ◽  
...  

Abstract Non-invasive diagnosis of breast cancer is still challenging due to the low specificity of the imaging modalities that calls for unnecessary biopsies. The diagnostic accuracy can be improved by assessing the breast tissue mechanical properties associated with pathological changes. Harmonic motion imaging (HMI) is an elasticity imaging technique that uses acoustic radiation force to evaluate the localized mechanical properties of the underlying tissue. Herein, we studied the in vivo feasibility of a clinical HMI system to differentiate breast tumors based on their relative HMI displacements, in human subjects. We performed HMI scans in 10 female subjects with breast masses: five benign and five malignant masses. Results revealed that both benign and malignant masses were stiffer than the surrounding tissues. However, malignant tumors underwent lower mean HMI displacement (1.1 ± 0.5 µm) compared to benign tumors (3.6 ± 1.5 µm) and the adjacent non-cancerous tissue (6.4 ± 2.5 µm), which allowed to differentiate between tumor types. Additionally, the excised breast specimens of the same patients (n = 5) were imaged post-surgically, where there was an excellent agreement between the in vivo and ex vivo findings, confirmed with histology. Higher displacement contrast between cancerous and non-cancerous tissue was found ex vivo, potentially due to the lower nonlinearity in the elastic properties of ex vivo tissue. This preliminary study lays the foundation for the potential complementary application of HMI in clinical practice in conjunction with the B-mode to classify suspicious breast masses.


2017 ◽  
Vol 141 (5) ◽  
pp. 3492-3492
Author(s):  
Christine E. Dalton ◽  
Zachary A. Coffman ◽  
Garrett Wagner ◽  
Timothy E. Doyle

2020 ◽  
Vol 31 ◽  
pp. S788
Author(s):  
F. Grillet ◽  
C. de Kroon ◽  
J.R. Kroep ◽  
J. Overkamp ◽  
A. Jariani ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Javier Sotres ◽  
Skaidre Jankovskaja ◽  
Kristin Wannerberger ◽  
Thomas Arnebrant

Sign in / Sign up

Export Citation Format

Share Document