Carbon nanotube-based matrices for tissue engineering

Author(s):  
Gabriela Simone Lorite ◽  
Olli Pitkänen ◽  
Melinda Mohl ◽  
Krisztian Kordas ◽  
Janne Tapio Koivisto ◽  
...  
2010 ◽  
Vol 6 (3) ◽  
pp. 735-742 ◽  
Author(s):  
Superb K. Misra ◽  
F. Ohashi ◽  
Sabeel P. Valappil ◽  
Jonathan C. Knowles ◽  
I. Roy ◽  
...  

2010 ◽  
Vol 21 (4) ◽  
pp. 1163-1168 ◽  
Author(s):  
Fan Xie ◽  
Pierre Weiss ◽  
Olivier Chauvet ◽  
Jean Le Bideau ◽  
Jean François Tassin

2019 ◽  
Vol 20 (9) ◽  
pp. 1869-1882 ◽  
Author(s):  
Hadi Tohidlou ◽  
Seyedeh Sara Shafiei ◽  
Shahsanam Abbasi ◽  
Mitra Asadi-Eydivand ◽  
Mehrnoosh Fathi-Roudsari

2019 ◽  
Vol 34 (4-5) ◽  
pp. 386-400 ◽  
Author(s):  
Moein Zarei ◽  
Nader Tanideh ◽  
Shahrokh Zare ◽  
Fatemeh Sari Aslani ◽  
Omid Koohi-Hosseinabadi ◽  
...  

In the present study, poly(3-hydroxybutyrate)-based composite scaffolds were prepared with multi-walled carbon nanotubes and hydroxyapatite nanoparticles for hard tissue engineering applications by electrospinning. All the prepared scaffolds showed connective porous structure, which were suitable for cell proliferation and migration. The mechanical properties of the poly(3-hydroxybutyrate) scaffold were improved by 0.5% of carbon nanotube addition, whereas the addition of hydroxyapatite nanoparticles up to 10% had an insignificant effect in tensile strength. However, scanning electron microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay results suggested that the mesenchymal stem cells attachment and their metabolic activities on the surface of the poly(3-hydroxybutyrate) scaffolds with hydroxyapatite were enhanced compared to poly(3-hydroxybutyrate) scaffolds. In addition, after 6 weeks of in vivo biocompatibility results in a model of rat indicated better tissue reactions for the scaffolds that contained hydroxyapatite. Overall, poly(3-hydroxybutyrate) composite scaffolds with 10% hydroxyapatite and 0.5% carbon nanotube showed optimal performances for the potential scaffold for hard tissue engineering application.


Sign in / Sign up

Export Citation Format

Share Document