An Advanced Data-Centric Multi-Granularity Platform for Industrial Data Analysis

Author(s):  
Marco S. Reis ◽  
Tiago J. Rato
2021 ◽  
Author(s):  
Nikolai West ◽  
Jonas Gries ◽  
Carina Brockmeier ◽  
Jens C. Gobel ◽  
Jochen Deuse

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2772 ◽  
Author(s):  
Aguinaldo Bezerra ◽  
Ivanovitch Silva ◽  
Luiz Affonso Guedes ◽  
Diego Silva ◽  
Gustavo Leitão ◽  
...  

Alarm and event logs are an immense but latent source of knowledge commonly undervalued in industry. Though, the current massive data-exchange, high efficiency and strong competitiveness landscape, boosted by Industry 4.0 and IIoT (Industrial Internet of Things) paradigms, does not accommodate such a data misuse and demands more incisive approaches when analyzing industrial data. Advances in Data Science and Big Data (or more precisely, Industrial Big Data) have been enabling novel approaches in data analysis which can be great allies in extracting hitherto hidden information from plant operation data. Coping with that, this work proposes the use of Exploratory Data Analysis (EDA) as a promising data-driven approach to pave industrial alarm and event analysis. This approach proved to be fully able to increase industrial perception by extracting insights and valuable information from real-world industrial data without making prior assumptions.


2020 ◽  
Vol 26 (4) ◽  
pp. 190-194
Author(s):  
Jacek Pietraszek ◽  
Norbert Radek ◽  
Andrii V. Goroshko

AbstractThe introduction of solutions conventionally called Industry 4.0 to the industry resulted in the need to make many changes in the traditional procedures of industrial data analysis based on the DOE (Design of Experiments) methodology. The increase in the number of controlled and observed factors considered, the intensity of the data stream and the size of the analyzed datasets revealed the shortcomings of the existing procedures. Modifying procedures by adapting Big Data solutions and data-driven methods is becoming an increasingly pressing need. The article presents the current methods of DOE, considers the existing problems caused by the introduction of mass automation and data integration under Industry 4.0, and indicates the most promising areas in which to look for possible problem solutions.


2018 ◽  
Vol 29 ◽  
pp. 00011 ◽  
Author(s):  
Jacek Wodecki ◽  
Anna Michalak ◽  
Paweł Stefaniak

Appropriate analysis of data measured on heavy-duty mining machines is essential for processes monitoring, management and optimization. Some particular classes of machines, for example LHD (load-haul-dump) machines, hauling trucks, drilling/bolting machines etc. are characterized with cyclicity of operations. In those cases, identification of cycles and their segments or in other words – simply data segmentation is a key to evaluate their performance, which may be very useful from the management point of view, for example leading to introducing optimization to the process. However, in many cases such raw signals are contaminated with various artifacts, and in general are expected to be very noisy, which makes the segmentation task very difficult or even impossible. To deal with that problem, there is a need for efficient smoothing methods that will allow to retain informative trends in the signals while disregarding noises and other undesired non-deterministic components. In this paper authors present a review of various approaches to diagnostic data smoothing. Described methods can be used in a fast and efficient way, effectively cleaning the signals while preserving informative deterministic behaviour, that is a crucial to precise segmentation and other approaches to industrial data analysis.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Liesle Caballero ◽  
Mario Jojoa ◽  
Winston S. Percybrooks

Sign in / Sign up

Export Citation Format

Share Document