Mouse models of tight junction physiology

Author(s):  
Jianghui Hou
Keyword(s):  
2019 ◽  
Vol 20 (21) ◽  
pp. 5504 ◽  
Author(s):  
Murat Seker ◽  
Cármen Fernández-Rodríguez ◽  
Luis Martínez-Cruz ◽  
Dominik Müller

In higher organisms, epithelia separate compartments in order to guarantee their proper function. Such structures are able to seal but also to allow substances to pass. Within the paracellular pathway, a supramolecular structure, the tight junction transport is largely controlled by the temporospatial regulation of its major protein family called claudins. Besides the fact that the expression of claudins has been identified in different forms of human diseases like cancer, clearly defined mutations in the corresponding claudin genes have been shown to cause distinct human disorders. Such disorders comprise the skin and its adjacent structures, liver, kidney, the inner ear, and the eye. From the phenotype analysis, it has also become clear that different claudins can cause a complex phenotype when expressed in different organs. To gain deeper insights into the physiology and pathophysiology of claudin-associated disorders, several mouse models have been generated. In order to model human disorders in detail, they have been designed either as full knockouts, knock-downs or knock-ins by a variety of techniques. Here, we review human disorders caused by CLDN mutations and their corresponding mouse models that have been generated thus far and assess their usefulness as a model for the corresponding human disorder.


2017 ◽  
Vol 11 (10) ◽  
pp. 1247-1257 ◽  
Author(s):  
Wolfgang Stremmel ◽  
Simone Staffer ◽  
Mathias Jochen Schneider ◽  
Hongying Gan-Schreier ◽  
Andreas Wannhoff ◽  
...  

Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


2001 ◽  
Vol 120 (5) ◽  
pp. A110-A110
Author(s):  
A HOPKINS ◽  
S WALS ◽  
P VERKADE ◽  
P BOQUET ◽  
A NUSRAT

Sign in / Sign up

Export Citation Format

Share Document